scholarly journals Reward Does Not Modulate the Preview Benefit in Visual Search

2020 ◽  
Author(s):  
Chisato Mine ◽  
Steven Most ◽  
Mike Le Pelley

Preview benefit refers to faster search for a target when a subset of distractors is seen prior to the search display. We investigated whether reward modulates this effect. Participants identified a target among non-targets on each trial. On “preview” trials, placeholders occupied half the search array positions prior to the onset of the full array. On “non-preview” trials, no placeholders preceded the full search array. On preview trials, the target could appear at either a placeholder position (old-target-location condition) or a position where no placeholder had been (new-target-location condition). Critically, the color of the stimulus array indicated whether participants would earn reward for a correct response. We found a typical preview benefit, but no evidence that reward modulated this effect, despite a manipulation check showing that stimuli in the reward-signaling color tended to capture attention on catch trials. The results suggest that reward learning does not modulate the preview benefit.

2003 ◽  
Vol 14 (2) ◽  
pp. 181-185 ◽  
Author(s):  
Melina A. Kunar ◽  
Glyn W. Humphreys ◽  
Kelly J. Smith

Visual search for a conjunction target is made easier when distractor items are temporally segregated over time to produce two separate old and new groups (the new group containing the target item). The benefit of presenting half the distractors first is known as the preview effect. Recently, some researchers have argued that the preview effect occurs because new stimuli capture attention. This account was tested in the present study by using a novel “top-up” condition that exploits the fact that when previews appear only briefly before the search display, there is minimal preview benefit. We show that effects of a brief preview can be “topped up” by an earlier exposure of the same items, even when the preview disappears between its first and second presentations. This top-up effect demonstrates that the history of the old stimuli is important for the preview benefit, contrary to the account favoring onset capture. We discuss alternative accounts of how the preview benefit arises.


2009 ◽  
Vol 102 (6) ◽  
pp. 3656-3672 ◽  
Author(s):  
Ilya E. Monosov ◽  
Kirk G. Thompson

We investigated the link between neuronal activity in the frontal eye field (FEF) and the enhancement of visual processing associated with covert spatial attention in the absence of eye movements. We correlated activity recorded in the FEF of monkeys manually reporting the identity of a visual search target to performance accuracy and reaction time. Monkeys were cued to the most probable target location with a cue array containing a popout color singleton. Neurons exhibited spatially selective responses for the popout cue stimulus and for the target of the search array. The magnitude of activity related to the location of the cue prior to the presentation of the search array was correlated with trends in behavioral performance across valid, invalid, and neutral cue trial conditions. However, the speed and accuracy of the behavioral report on individual trials were predicted by the magnitude of spatial selectivity related to the target to be identified, not for the spatial cue. A minimum level of selectivity was necessary for target detection and a higher level for target identification. Muscimol inactivation of FEF produced spatially selective perceptual deficits in the covert search task that were correlated with the effectiveness of the inactivation and were strongest on invalid cue trials that require an endogenous attention shift. These results demonstrate a strong functional link between FEF activity and covert spatial attention and suggest that spatial signals from FEF directly influence visual processing during the time that a stimulus to be identified is being processed by the visual system.


2021 ◽  
Author(s):  
Douglas A Addleman ◽  
Vanessa G. Lee

Central vision loss disrupts voluntary shifts of spatial attention during visual search. Recently, we reported that a simulated scotoma impaired implicit spatial attention towards regions likely to contain search targets. In that task, search items were overlaid on natural scenes. Because natural scenes can induce explicit awareness of learned biases leading to voluntary shifts of attention, here we used a search display with a blank background less likely to induce awareness of target location probabilities. Participants searched both with and without a simulated central scotoma: a training phase contained targets more often in one screen quadrant and a testing phase contained targets equally often in all quadrants. In Experiment 1, training used no scotoma, while testing alternated between blocks of scotoma and no-scotoma search. Experiment 2 training included the scotoma and testing again alternated between scotoma and no-scotoma search. Response times and saccadic behaviors in both experiments showed attentional biases towards the high-probability target quadrant during scotoma and no-scotoma search. Whereas simulated central vision loss impairs implicitly learned spatial attention in the context of natural scenes, our results show that this may not arise from impairments to the basic mechanisms of attentional learning indexed by visual search tasks without scenes.


Author(s):  
Tobias Rieger ◽  
Lydia Heilmann ◽  
Dietrich Manzey

AbstractVisual inspection of luggage using X-ray technology at airports is a time-sensitive task that is often supported by automated systems to increase performance and reduce workload. The present study evaluated how time pressure and automation support influence visual search behavior and performance in a simulated luggage screening task. Moreover, we also investigated how target expectancy (i.e., targets appearing in a target-often location or not) influenced performance and visual search behavior. We used a paradigm where participants used the mouse to uncover a portion of the screen which allowed us to track how much of the stimulus participants uncovered prior to their decision. Participants were randomly assigned to either a high (5-s time per trial) or a low (10-s time per trial) time-pressure condition. In half of the trials, participants were supported by an automated diagnostic aid (85% reliability) in deciding whether a threat item was present. Moreover, within each half, in target-present trials, targets appeared in a predictable location (i.e., 70% of targets appeared in the same quadrant of the image) to investigate effects of target expectancy. The results revealed better detection performance with low time pressure and faster response times with high time pressure. There was an overall negative effect of automation support because the automation was only moderately reliable. Participants also uncovered a smaller amount of the stimulus under high time pressure in target-absent trials. Target expectancy of target location improved accuracy, speed, and the amount of uncovered space needed for the search.Significance Statement Luggage screening is a safety–critical real-world visual search task which often has to be done under time pressure. The present research found that time pressure compromises performance and increases the risk to miss critical items even with automation support. Moreover, even highly reliable automated support may not improve performance if it does not exceed the manual capabilities of the human screener. Lastly, the present research also showed that heuristic search strategies (e.g., areas where targets appear more often) seem to guide attention also in luggage screening.


2019 ◽  
Vol 31 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Peter S. Whitehead ◽  
Mathilde M. Ooi ◽  
Tobias Egner ◽  
Marty G. Woldorff

The contents of working memory (WM) guide visual attention toward matching features, with visual search being faster when the target and a feature of an item held in WM spatially overlap (validly cued) than when they occur at different locations (invalidly cued). Recent behavioral studies have indicated that attentional capture by WM content can be modulated by cognitive control: When WM cues are reliably helpful to visual search (predictably valid), capture is enhanced, but when reliably detrimental (predictably invalid), capture is attenuated. The neural mechanisms underlying this effect are not well understood, however. Here, we leveraged the high temporal resolution of ERPs time-locked to the onset of the search display to determine how and at what processing stage cognitive control modulates the search process. We manipulated predictability by grouping trials into unpredictable (50% valid/invalid) and predictable (100% valid, 100% invalid) blocks. Behavioral results confirmed that predictability modulated WM-related capture. Comparison of ERPs to the search arrays showed that the N2pc, a posteriorly distributed signature of initial attentional orienting toward a lateralized target, was not impacted by target validity predictability. However, a longer latency, more anterior, lateralized effect—here, termed the “contralateral attention-related negativity”—was reduced under predictable conditions. This reduction interacted with validity, with substantially greater reduction for invalid than valid trials. These data suggest cognitive control over attentional capture by WM content does not affect the initial attentional-orienting process but can reduce the need to marshal later control mechanisms for processing relevant items in the visual world.


NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 887-897 ◽  
Author(s):  
Stefan Pollmann ◽  
Jana Eštočinová ◽  
Susanne Sommer ◽  
Leonardo Chelazzi ◽  
Wolf Zinke

2001 ◽  
Vol 54 (4) ◽  
pp. 1105-1124 ◽  
Author(s):  
Yuhong Jiang ◽  
Marvin M. Chun

The effect of selective attention on implicit learning was tested in four experiments using the “contextual cueing” paradigm (Chun & Jiang, 1998, 1999). Observers performed visual search through items presented in an attended colour (e.g., red) and an ignored colour (e.g., green). When the spatial configuration of items in the attended colour was invariant and was consistently paired with a target location, visual search was facilitated, showing contextual cueing (Experiments 1, 3, and 4). In contrast, repeating and pairing the configuration of the ignored items with the target location resulted in no contextual cueing (Experiments 2 and 4). We conclude that implicit learning is robust only when relevant, predictive information is selectively attended.


2021 ◽  
pp. 1-17
Author(s):  
Jennifer-Ashley Hoffmeister ◽  
Andrea N. Smit ◽  
Ashley C. Livingstone ◽  
John J. McDonald

Abstract The control processes that guide attention to a visual-search target can result in the selection of an irrelevant object with similar features (a distractor). Once attention is captured by such a distractor, search for a subsequent target is momentarily impaired if the two stimuli appear at different locations. The textbook explanation for this impairment is based on the notion of an indivisible focus of attention that moves to the distractor, illuminates a nontarget that subsequently appears at that location, and then moves to the target once the nontarget is rejected. Here, we show that such delayed orienting to the target does not underlie the behavioral cost of distraction. Observers identified a color-defined target appearing within the second of two stimulus arrays. The first array contained irrelevant items, including one that shared the target's color. ERPs were examined to test two predictions stemming from the textbook serial-orienting hypothesis. Namely, when the target and distractor appear at different locations, (1) the target should elicit delayed selection activity relative to same-location trials, and (2) the nontarget search item appearing at the distractor location should elicit selection activity that precedes selection activity tied to the target. Here, the posterior contralateral N2 component was used to track selection of each of these search-array items and the previous distractor. The results supported neither prediction above, thereby disconfirming the serial-orienting hypothesis. Overall, the results show that the behavioral costs of distraction are caused by perceptual and postperceptual competition between concurrently attended target and nontarget stimuli.


2001 ◽  
Vol 86 (5) ◽  
pp. 2634-2637 ◽  
Author(s):  
Aditya Murthy ◽  
Kirk G. Thompson ◽  
Jeffrey D. Schall

Previous studies of visually responsive neurons in the frontal eye fields have identified a selection process preceding saccades during visual search. The goal of this experiment was to determine whether the selection process corresponds to the selection of a conspicuous stimulus or to preparation of the next saccade. This was accomplished with the use of a novel task, called search-step, in which the target of a singleton visual search array switches location with a distracter on random trials. The target step trials created a condition in which the same stimulus yielded saccades either toward or away from the target. Visually responsive neurons in frontal eye field selected the current location of the conspicuous target even when gaze shifted to the location of a distractor. This dissociation demonstrates that the selection process manifest in visual neurons in the frontal eye field may be an explicit interpretation of the image and not an obligatory saccade command.


Sign in / Sign up

Export Citation Format

Share Document