Sincere praise and flattery: Reward value and association with the praise-seeking trait

2021 ◽  
Author(s):  
Shotaro Fujiwara ◽  
Ryo Ishibashi ◽  
Azumi Tanabe-Ishibashi ◽  
Ryuta Kawashima ◽  
Motoaki Sugiura

Sincere praise reliably conveys positive or negative feedback, while flattery always conveys positive but unreliable feedback. These two praise types have not been compared in terms of communication effectiveness and individual preferences using neuroimaging. Through functional magnetic resonance imaging, we measured brain activity when healthy young participants received sincere praise or flattery after performing a visual search task. Higher activation was observed in the right nucleus accumbens during sincere praise than during flattery, and praise reliability correlated with posterior cingulate cortex activity, implying a motivational effect of sincere praise. In line with this, sincere praise uniquely activated several cortical areas potentially involved in concern regarding others' evaluations. A high praise-seeking tendency was associated with lower activation of the inferior parietal sulcus during sincere praise compared to flattery after poor task performance, potentially reflecting suppression of negative feedback to maintain self-esteem. In summary, the neural dynamics of the motivational and socio-emotional effects of praise differed.

2018 ◽  
Vol 120 (5) ◽  
pp. 2311-2324 ◽  
Author(s):  
Andrey R. Nikolaev ◽  
Radha Nila Meghanathan ◽  
Cees van Leeuwen

In free viewing, the eyes return to previously visited locations rather frequently, even though the attentional and memory-related processes controlling eye-movement show a strong antirefixation bias. To overcome this bias, a special refixation triggering mechanism may have to be recruited. We probed the neural evidence for such a mechanism by combining eye tracking with EEG recording. A distinctive signal associated with refixation planning was observed in the EEG during the presaccadic interval: the presaccadic potential was reduced in amplitude before a refixation compared with normal fixations. The result offers direct evidence for a special refixation mechanism that operates in the saccade planning stage of eye movement control. Once the eyes have landed on the revisited location, acquisition of visual information proceeds indistinguishably from ordinary fixations. NEW & NOTEWORTHY A substantial proportion of eye fixations in human natural viewing behavior are revisits of recently visited locations, i.e., refixations. Our recently developed methods enabled us to study refixations in a free viewing visual search task, using combined eye movement and EEG recording. We identified in the EEG a distinctive refixation-related signal, signifying a control mechanism specific to refixations as opposed to ordinary eye fixations.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Qi Liu ◽  
Peihai Zhang ◽  
Junjie Pan ◽  
Zhengjie Li ◽  
Jixin Liu ◽  
...  

Background.Pattern differentiation is the foundation of traditional Chinese medicine (TCM) treatment for erectile dysfunction (ED). This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns.Methods.27 psychogenic ED patients and 27 healthy subjects (HS) were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF) was used to detect the brain activity changes in ED patients with different patterns.Results.Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC), and middle cingulate cortex (MCC). Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP), the patients with kidney-yang deficiency pattern (KDP) showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P<0.005).Conclusions.The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex.


2010 ◽  
Vol 22 (5) ◽  
pp. 918-930 ◽  
Author(s):  
Alexandre Zenon ◽  
Nabil Filali ◽  
Jean-René Duhamel ◽  
Etienne Olivier

Some objects in the visual field are more likely to attract attention because they are either intrinsically eye catching or relevant in the context of a particular task. These two factors, known as stimulus-driven and goal-directed factors, respectively, are thought to be integrated into a unique salience map, possibly located in the frontal or the parietal cortex. However, the distinct contribution of these two regions to salience representation is difficult to establish experimentally and remains debated. In an attempt to address this issue, we designed several dual tasks composed of a letter reporting task and a visual search task, allowing us to quantify the salience of each visual item by measuring its probability to be selected by attention. In Experiment 1, the salience of the visual search items depended on a combination of conspicuity and relevance factors, whereas in Experiment 2, stimulus-driven and goal-directed factors were tested separately. Then, we used transcranial magnetic stimulation to interfere transiently with the function of the right angular gyrus (ANG) or right FEFs in healthy subjects performing these dual tasks. We found that interfering with the ANG and the FEF function specifically altered the influence of salience on the letter report rate without affecting the overall letter reporting rate, suggesting that these areas are involved in salience representation. In particular, the present study suggests that ANG is involved in goal-directed salience representation, whereas FEF would rather house a global salience map integrating both goal-directed and stimulus-driven factors.


2016 ◽  
Vol 22 (7) ◽  
pp. 695-704 ◽  
Author(s):  
Krista Schendel ◽  
Nina F. Dronkers ◽  
And U. Turken

AbstractObjectives: Imbalances in spatial attention are most often associated with right hemisphere brain injury. This report assessed 25 chronic left hemisphere stroke patients for attentional bias. Methods: Participants were evaluated with a computerized visual search task and a standardized neuropsychological assessment known as the Behavioral Inattention Test (BITC). Twenty age-matched controls were also tested. Results: Although little to no attentional impairment was observed on the BITC, the computerized visual search task revealed statistically significant contralesional attentional impairment in the left hemisphere stroke group. Specifically, these participants required 208 ms more viewing time, on average, to reliably detect visual targets on the right side of the display compared to detection on the left side, while controls showed a difference of only 8 ms between the two sides. Conclusions: The observation of significant leftward visuospatial bias in this chronic stroke group provides further evidence that the left hemisphere also plays a role in the balance of visual attention across space. These results have implications for left hemisphere patients who are often not screened for visuospatial problems, as well as for theories of visual attention which have primarily emphasized the role of the right hemisphere. (JINS, 2016, 22, 695–704)


2011 ◽  
Vol 23 (7) ◽  
pp. 1710-1722 ◽  
Author(s):  
Kevin Dent ◽  
Harriet Allen ◽  
Glyn W. Humphreys

Brain activity was recorded while participants engaged in a difficult visual search task for a target defined by the spatial configuration of its component elements. The search displays were segmented by time (a preview then a search display), by motion, or were unsegmented. A preparatory network showed activity to the preview display, in the time but not in the motion segmentation condition. A region of the precuneus showed (i) higher activation when displays were segmented by time or by motion, and (ii) correlated activity with larger segmentation benefits behaviorally, regardless of the cue. Additionally, the results revealed that success in temporal segmentation was correlated with reduced activation in early visual areas, including V1. The results depict partially overlapping brain networks for segmentation in search by time and motion, with both cue-independent and cue-specific mechanisms.


2009 ◽  
Vol 21 (4) ◽  
pp. 725-733 ◽  
Author(s):  
John J. McDonald ◽  
Clayton Hickey ◽  
Jessica J. Green ◽  
Jennifer C. Whitman

People are slow to react to objects that appear at recently attended locations. This delay—known as inhibition of return (IOR)—is believed to aid search of the visual environment by discouraging inspection of recently inspected objects. However, after two decades of research, there is no evidence that IOR reflects an inhibition in the covert deployment of attention. Here, observers participated in a modified visual-search task that enabled us to measure IOR and an ERP component called the posterior contralateral N2 (N2pc) that reflects the covert deployment of attention. The N2pc was smaller when a target appeared at a recently attended location than when it appeared at a recently unattended location. This reduction was due to modulation of neural processing in the visual cortex and the right parietal lobe. Importantly, there was no evidence for a delay in the N2pc. We conclude that in our task, the inhibitory processes underlying IOR reduce the probability of shifting attention to recently attended locations but do not delay the covert deployment of attention itself.


2016 ◽  
Vol 28 (9) ◽  
pp. 1303-1317 ◽  
Author(s):  
Francesco Rigoli ◽  
Benjamin Chew ◽  
Peter Dayan ◽  
Raymond J. Dolan

Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor.


2020 ◽  
Vol 14 ◽  
Author(s):  
Fei-Fei Luo ◽  
Hui Xu ◽  
Ming Zhang ◽  
Yuan Wang

PurposeThree classical methods of resting-state functional magnetic resonance imaging (rs-fMRI) were employed to explore the local functional abnormalities and their effect on spasm ratings in hemifacial spasm (HFS) patients.MethodsThirty HFS patients and 30 matched healthy controls (HCs) were recruited. Rs-fMRI data, neurovascular compression (NVC) degree and spasm severity were collected in each subject. Fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated in the whole brain voxels. Two sample t-tests were performed to investigate group differences of fALFF, ReHo, and DC. Correlation analysis was performed to assess the relationships between the regional brain abnormalities and clinical variables in HFS.ResultsCompared with HCs, HFS patients exhibited increased fALFF in the left precuneus and right posterior cingulate cortex (PCC), together with increased ReHo in the bilateral PCC and bilateral precuneus. Decreased ReHo was observed in the right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), right cuneus, and right angular gyrus (AG) in HFS patients. Moreover, ReHo in the right PCC were positively correlated with NVC degree and spasm severity in HFS patients, respectively. Mediation analysis revealed that increased ReHo in the right PCC regulated the neurovascular compression degree, and further resulted in increased spasm ratings.ConclusionOur study revealed regional brain dysfunctions from different perspectives and an indirect effect of ReHo in right PCC on spasm ratings predominantly through the alteration of NVC.


2019 ◽  
Vol 61 (7) ◽  
pp. 927-935 ◽  
Author(s):  
Rongfeng Qi ◽  
Zhao Shi ◽  
Yifei Weng ◽  
Yulin Yang ◽  
Yifei Zhou ◽  
...  

Background Functional dyspepsia (FD) subtypes may differ in terms of pathophysiology, but the underlying mechanisms remain poorly understood. Purpose To explore spontaneous brain activity in two main FD subtypes, namely epigastric pain syndrome (EPS) and postprandial distress syndrome (PDS), using the amplitude of low-frequency fluctuation (ALFF). Material and Methods Thirty-one FD patients (18 EPS and 13 PDS) and 22 matched healthy controls (HC) underwent resting-state functional MRI scanning. Spontaneous brain activity was evaluated by measuring the ALFF and then compared among the EPS, PDS, and HC groups with ANOVA test. Pearson correlation analysis was performed between the ALFF values and clinical indices. Results Compared to healthy controls, both EPS and PDS patients had increased ALFF in the bilateral precentral/postcentral gyri, insula, and thalami. Furthermore, only the EPS patients displayed increased ALFF in the right middle and inferior frontal gyri, and only the PDS patients showed increased ALFF in the left posterior cingulate cortex (PCC). The ALFF values in the left thalamus were positively correlated with the sleep disturbance in EPS patients, and the ALFF values in the right precentral/postcentral gyri showed a positive correlation with the symptom score in PDS patients. Conclusion EPS and PDS had similarities of higher spontaneous brain activity in the primary motor/sensory areas and homeostatic-afferent network regions, and differences in the prefrontal region and PCC, providing evidence to suggest the similarity and diversity of pathophysiology in FD subtypes.


2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


Sign in / Sign up

Export Citation Format

Share Document