scholarly journals Restaurant decision-maker perceptions of barriers and opportunities for invasive lionfish consumption

2021 ◽  
Author(s):  
Kate Burgess ◽  
Nathan Smith ◽  
Jennifer N. Solomon ◽  
Kaylin Clements ◽  
Joanne Burgess ◽  
...  

Lionfish (Pterois volitans, Pterois miles), invasive coral reef fishes in the western Atlantic, cause extensive negative impacts to marine ecosystems. Following their introduction in Florida in the 1980’s, lionfish colonized numerous coral reef ecosystems and have been documented at depths ranging from 1-300m. In addition to depleting native reef fish biomass and threatening macroalgae induced phase shifts on shallow reefs, the invasion of lionfish has caused severe economic damage in the form of reduced native fish yields for local fisher people and high costs of management. While few examples exist of successful management of marine invasive species, studies have shown that lionfish removal can decrease their density and increase prey species biomass. A critical component and challenge for any effective lionfish removal effort is to maintain consistently high levels of lionfish harvesting so as to reduce lionfish abundance to levels that mitigate their negative ecological impacts. One popular market-based option that may achieve this is increasing the demand for the consumption of lionfish. This management solution offers potential benefits to both human livelihoods and marine ecosystems. Our study focuses on Florida’s consumptive lionfish market and fills a gap in understanding the lionfish supply chain for Florida’s restaurant industry. Although lionfish are commercially available in Florida, they are not currently widely consumed with consistency. We conducted interviews with twenty restaurant decision-makers in FL to understand their perceptions of barriers and opportunities for increasing their use of invasive lionfish. The most commonly identified barriers were: price and consistency of supply, while the most prominent opportunities were: improved awareness and culinary potential to increase the demand for lionfish. Conservation managers and policymakers should leverage these findings to facilitate opportunities, address barriers, and promote public education about invasive lionfish and their impacts.

Coral Reefs ◽  
2021 ◽  
Author(s):  
Jameal F. Samhouri ◽  
Adrian C. Stier

AbstractThe impacts of invasive lionfish (Pterois volitans/miles) on native coral reef populations in the Western Atlantic Ocean and Caribbean Sea can be enormous. However, how much lionfish differ from native predators and whether their effects outweigh the abundant mesopredators that occupy many reefs invite continued examination. Here, we present empirical evidence from Caribbean Panama and beyond suggesting that lionfish are less abundant than native mesopredators. Furthermore, we show that their direct impacts on survivorship and size distributions of one native prey species are similar to those of a native mesopredator. These results support calls for lionfish management that considers evolving local ecological and social dynamics, including prey community composition, the roles of native mesopredators, and regional goals for conservation and fisheries. Recognition of regional context creates the potential for synergies between conservation actions aimed both at the invasion and other consequential problems such as overexploitation and climate change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Morgan S. Pratchett ◽  
Vanessa Messmer ◽  
Shaun K. Wilson

Abstract Increasing degradation of coral reef ecosystems and specifically, loss of corals is causing significant and widespread declines in the abundance of coral reef fishes, but the proximate cause(s) of these declines are largely unknown. Here, we examine specific responses to host coral mortality for three species of coral-dwelling damselfishes (Dascyllus aruanus, D. reticulatus, and Pomacentrus moluccensis), explicitly testing whether these fishes can successfully move and recolonize nearby coral hosts. Responses of fishes to localized coral loss was studied during population irruptions of coral feeding crown-of-thorns starfish, where starfish consumed 29 (34%) out of 85 coral colonies, of which 25 (86%) were occupied by coral-dwelling damselfishes. Damselfishes were not tagged or individually recognizable, but changes in the colonization of different coral hosts was assessed by carefully assessing the number and size of fishes on every available coral colony. Most damselfishes (> 90%) vacated dead coral hosts within 5 days, and either disappeared entirely (presumed dead) or relocated to nearby coral hosts. Displaced fishes only ever colonized corals already occupied by other coral-dwelling damselfishes (mostly conspecifics) and colonization success was strongly size-dependent. Despite movement of damselfishes to surviving corals, the local abundance of coral-dependent damselfishes declined in approximate accordance with the proportional loss of coral habitat. These results suggest that even if alternative coral hosts are locally abundant, there are significant biological constraints on movement of coral-dwelling damselfishes and recolonization of alternative coral habitats, such that localized persistence of habitat patches during moderate or patchy disturbances do not necessarily provide resilience against overall habitat loss.


2016 ◽  
Vol 67 (5) ◽  
pp. 605 ◽  
Author(s):  
Amy G. Coppock ◽  
Naomi M. Gardiner ◽  
Geoffrey P. Jones

Coral degradation is a major threat towards the biodiversity of coral-reef ecosystems, either through the physical effects of environmental change, or biological agents such as crown-of-thorns (Acanthaster planci). Coral loss is leading to significant declines in reef-fish assemblages, particularly those dependent on live coral as settlement sites. Most reef fishes use olfactory stimuli at settlement; however, their ability to detect chemical stimuli from degraded corals or A. planci is unknown. Here, olfactory responses of juvenile reef fishes to the presence of stressed corals and A. planci were tested. Juveniles of eight common coral-associated species were subjected to a series of pair-wise choice tests, where the period of time spent in two differing water sources was noted. All species demonstrated a significant attraction towards healthy coral (≥76%), avoiding cues emitted by stressed coral colonies. When given the choice between a control water (untreated reef water) and water containing chemical cues from A. planci, most species elicited no response. Finally, when given the choice between chemical cues derived from feeding A. planci or the control, all species avoided A. planci (≥70%). Our results indicated that juvenile reef fish are capable of distinguishing the state of coral health, but not directly from disturbance agents.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6541 ◽  
Author(s):  
Moisés A. Bernal ◽  
Groves B. Dixon ◽  
Mikhail V. Matz ◽  
Luiz A. Rocha

Background Coral reefs are major hotspots of diversity for marine fishes, yet there is still ongoing debate on the mechanisms that promote divergence in these rich ecosystems. Our understanding of how diversity originates in this environment could be enhanced by investigating the evolutionary dynamics of closely related fishes with overlapping ranges. Here, we focus on grunts of the genus Haemulon, a group of coral reef fishes with 15 species in the Western Atlantic, 11 of which are syntopic. Methods Wild fish samples from three sympatric species of the Caribbean: Haemulon flavolineatum, H. carbonarium and H. macrostomum, were collected while SCUBA diving. RNA was extracted from livers, and the transcriptomes were assembled and annotated to investigate positive selection (Pairwise dN/dS) and patterns of gene expression between the three species. Results Pairwise dN/dS analyses showed evidence of positive selection for genes associated with immune response, cranial morphology and formation of the anterior–posterior axis. Analyses of gene expression revealed that despite their sympatric distribution, H. macrostomum showed upregulation of oxidation-reduction machinery, while there was evidence for activation of immune response in H. carbonarium. Discussion Overall, our analyses suggest closely related grunts show important differences in genes associated with body shape and feeding morphology, a result in-line with previous morphological studies in the group. Further, despite their overlapping distribution they interact with their environment in distinct fashions. This is the largest compendium of genomic information for grunts thus far, representing a valuable resource for future studies in this unique group of coral reef fishes.


2020 ◽  
Vol 40 (6) ◽  
pp. 866-871 ◽  
Author(s):  
Matthew D Nicholson ◽  
Gina C Hendrick ◽  
Amber J Packard ◽  
Davis L Strobel ◽  
Clayton Vondriska ◽  
...  

Abstract Parasites play significant roles in the function of ecosystems and can make up a large proportion of overall biomass. Yet, fundamental aspects of their ecology are often understudied relative to other organisms. Gnathiid isopods are the primary ectoparasites of fishes in coral reef ecosystems. While some studies have investigated their host-detection capabilities, the means by which they seek hosts are largely unknown. Gnathiids are benthic and live on the bottom, and all collection efforts involving live hosts have thus far involved traps set at or near the reef substrate. We investigated the distance gnathiids will travel vertically in the water column to attach to a fish host. The majority of gnathiids collected were at or less than 1 m above the reef substrate, and gnathiids were collected in serially diminishing numbers at 2 and 3 m above it. No gnathiids were collected from any fish hosts set more than 3.5 m above the reef substrate. Results suggest that gnathiids will actively seek host fishes in situ and will travel further from their benthic habitat than previously known. By swimming into the water column, gnathiids can exploit larger, highly-mobile fishes, which can serve as a major source of dispersal.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 176
Author(s):  
Yee Lau ◽  
James Reimer

Shallow water coral reefs are the most diverse marine ecosystems, but there is an immense gap in knowledge when it comes to understanding the diversity of the vast majority of marine biota in these ecosystems. This is especially true when it comes to understudied small and cryptic coral reef taxa in understudied ecosystems, such as mesophotic coral reef ecosystems (MCEs). MCEs were reported in Japan almost fifty years ago, although only in recent years has there been an increase in research concerning the diversity of these reefs. In this study we describe the first stoloniferous octocoral from MCEs, Hadaka nudidomus gen. nov. et sp. nov., from Iriomote and Okinawa Islands in the southern Ryukyus Islands. The species is zooxanthellate; both specimens host Cladocopium LaJeunesse & H.J.Jeong, 2018 (formerly Symbiodinium ‘Clade C’) and were collected from depths of ~33 to 40 m. Additionally, H. nudidomus gen. nov. et sp. nov. is both sclerite-free and lacks free pinnules, and both of these characteristics are typically diagnostic for octocorals. The discovery and morphology of H. nudidomus gen. nov. et sp. nov. indicate that we still know very little about stoloniferous octocoral diversity in MCEs, their genetic relationships with shallower reef species, and octocoral–symbiont associations. Continued research on these subjects will improve our understanding of octocoral diversity in both shallow and deeper reefs.


2003 ◽  
Vol 496 (33) ◽  
pp. 598-610 ◽  
Author(s):  
Carlos Gonzalez-Salas ◽  
Enrique Nunez-Lara ◽  
Miguel A. Ruiz-Zarate ◽  
Roberto C. Hernandez-Landa ◽  
Ernesto J. Arias-Gonzalez

2018 ◽  
Vol 20 (9) ◽  
pp. 2567-2597 ◽  
Author(s):  
Jonathan Peake ◽  
Alex K. Bogdanoff ◽  
Craig A. Layman ◽  
Bernard Castillo ◽  
Kynoch Reale-Munroe ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 54-64
Author(s):  
Agustinus Tupamahu ◽  
Haruna Haruna ◽  
Barbara G Hutubessy ◽  
Stany R Siahainenia ◽  
Albert Ch Nanlohy ◽  
...  

Various fishing gears that are operated in the coral reef waters of Western Seram Regency have their own selectivity, capture various species of fish, and have an impact on the damage to coral reef ecosystems. This study aims to determine the leading reef fishing gears in Western Seram District. The survey method is through observations and interviews with fishermen who conduct fishing activities of coral species. Respondents are determined by propulsive sampling, the selection of superior fishing gear is done by the scoring method. The results showed that the fishing gear classified into the line fishing gear was superior to other fishing gear, where the bottom trolling were superior. The less favored coral fishing equipment especially from the biological aspect needs attention to improve the method and design of the fishing gear.


Coral Reefs ◽  
2020 ◽  
Vol 39 (6) ◽  
pp. 1565-1579
Author(s):  
Vanessa Robitzch ◽  
Michael L. Berumen

AbstractKnowledge on the early life history, ecology, and biology of marine species is crucial for future projections of the resilience of coral reef ecosystems and for adequate management strategies. A fundamental component of population dynamics is the recruitment of new individuals, and in some marine populations, this may be a limiting factor. Recruitment peaks of coral reef fishes commonly occur during the warmer months of the year in many subtropical and temperate locations worldwide. In the Red Sea, very little is known about the influence of temperature on reproductive patterns of coral reef fishes and studies on recruitment are missing. The Red Sea is one of the hottest and most isolated tropical seas in the world. We hypothesized that sea surface temperatures (SSTs) during the Red Sea’s hottest season may exceed the optimum for successful recruitment of some coral reef fishes, which therefore has to occur during other, cooler seasons, unlike recruitment among coral reef ecosystems around the world. We identified taxa among fish recruits by matching mitochondrial DNA sequences (using COI, commonly known as “barcoding”) and assessed potential biological and environmental drivers of recruitment. We studied three reefs located along a cross-shelf gradient for 12 consecutive months in the central Red Sea to capture seasonal changes in biotic and abiotic parameters along this gradient. Our results indicated that recruitment peaks did not occur during the hottest SSTs for most taxa, especially at the hottest inshore and mid-shelf reefs, and identified fish recruitment to be mainly and strongly correlated with the biomass of planktonic invertebrates. Moreover, temporal patterns of fish recruitment differed within and among taxonomic families among the reefs.


Sign in / Sign up

Export Citation Format

Share Document