Antimicrobial Study of Green Synthesized Silver Nanoparticles (AgNPs) by Using Ageratina adenophora and its Characterization

2021 ◽  
Vol 9 (2) ◽  
pp. 128-132
Author(s):  
Surendra K. Gautam ◽  
Yasha Baid ◽  
Pabita Thapa Magar ◽  
Tirtha Raj Binadi ◽  
Bishow Regmi

Green chemistry refers to the design of chemical product and processes that reduce or eliminate the generation of hazardous substances. Silver nanoparticles (AgNPs) were synthesized successfully from AgNO3 through a simple green synthetic route using Ageratina adenophora leaf extract which acts as both reducing and capping agents. As synthesized AgNPs were characterized with the help of X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. XRD study shows crystalline nature of silver nanoparticles and average particle size was calculated as 24 nm using Debye Scherrer equation. Functional group responsible for the reduction of silver ion was investigated using FTIR spectroscopy. Hydroxyl group, amine group, aliphatic amine group were detected from FTIR analysis. Further, the green synthesized nanoparticles were found to be highly toxic against bacteria: Bacillus subtilis and Escherichia coli showing zone of inhibition of 11 mm and 9 mm, respectively. Int. J. Appl. Sci. Biotechnol. Vol 9(2): 128-132.

2017 ◽  
Author(s):  
Yusnita Rifai

AbstrakNanopartikel perak telah disintesis menggunakan metode reduksi. Dalam penelitian ini, ekstrak metanol daun Kemangi (Ocimum citriodorum) digunakan sebagai agen pereduksi untuk prekursor AgNO3. Sintesis nanopartikel perak dilakukan dengan mencampurkan laru- tan AgNO3 1mM dengan filtrat ekstrak daun kemangi. Hasil karakterisasi UV-Vis menun- jukkan bahwa nilai absorbansi meningkat dengan meningkatnya waktu kontak reaksi. Pun- cak absorbansi spektrum UV-Vis dari sampel biosintesis nanopartikel perak berkisar pada 427-439 nm selama 1 hari dengan pengadukan dan penyimpanan. Ukuran nanopartikel perak ditentukan menggunakan Pengukur Ukuran Partikel (PSA) dengan rata-rata distribusi uku- ran partikel sebesar 57,38 nm. Efek mekanik dalam proses biosintesis nanopartikel perak cenderung mempercepat pembentukan nanopartikel perak. Hasil karakterisasi menggunakan Difraksi Sinar-X (XRD) diketahui kristalit yang terbentuk memiliki intensitas terbesar pada sudut 38° dengan nilai FWHM 0,66310 (ukuran 0,3 nm) dalam sistem kristal kubik.Kata kunci: Biosintesis, Nanopartikel Perak, Ocimum citriodorum, Karakterisasi AbstractSynthesis of silver nanoparticles by using the reduction method with methanol extract basil (Ocimum citriodorum) leaves, which acted as a reducing agent for AgNO3 precursor have been conducted. Synthesis nanoparticles was carried out by mixing the solution of AgNO3 1mM with filtrate extract of Ocimum leaves. The results of characterization showed that absorbance values increased with the increase in reaction time. Peak of UV-Vis absorption spectrum of biosynthesis sample of silver nanoparticles with stirring and storage each at a wavelength 427-439 nm for 1 day. Silver nanoparticles size was determined by using PSA (Particles Size Analyzer) with an average particle size distribution of 57,38 nm. Mechanical effect in biosynthesis process of silver nanoparticles tends to speed up the formation of silver nanoparticles. The result of characterization by using X-Ray Diffraction (XRD) described that the formed crystal had the angle of 38° with the value of FWHM 0,66310 (sixe 0.3 nm) in cubic crystal system.Key word: Biosynthesis, Silver Nanoparticles, Ocimum citriodorum, Characterization.


2021 ◽  
Vol 11 (10) ◽  
pp. 4638
Author(s):  
Jose Luis López-Miranda ◽  
Rodrigo Esparza ◽  
Marlen Alexis González-Reyna ◽  
Beatriz Liliana España-Sánchez ◽  
Angel Ramon Hernandez-Martinez ◽  
...  

This work reports, for the first time, the synthesis of silver nanoparticles using extracts of the species of Sargassum natans and Sargassum fluitans (AgNPs-S). Their antibacterial and catalytic properties are compared with silver nanoparticles obtained by chemical synthesis (AgNPs-C). The characterization of AgNPs-S and AgNPs-C was carried out using ultraviolet–visible spectroscopy (UV–Vis), dynamic light scattering (DLS), zeta potential, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis. The synthesis of silver nanoparticles using Sargassum extract was optimized through varying experimental parameters, such as the type of solvent used to prepare the extract, the volume of the extract, and the pH of the system. The most efficient sample (AgNPs-S) was prepared with a water–ethanol-based extract, using a 3:1 volumetric ratio of extract: a precursor salt with the addition of 1 mL of NaOH pH = 14. The AgNPs-C were spherical in shape, with an average particle size of 11.55 nm, while the AgNPs-S were polyhedral shaped, with an average particle size of 26.39 nm. The synthesized AgNPs-S were found to have significantly higher catalytic activity for the degradation of methylene blue and more effective antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa than AgNPs-C.


Author(s):  
Pratik Kumar Jagtap ◽  
Rupesh Kumar Meher ◽  
Madhuri Madhusmita Biswal

Background: The synthesis of metal Nanoparticles is a growing area of research interest due to its potential in the applications and development of advanced technologies. Here we have stressed on the Facile green synthesis approach that connects the nanotechnology and biotechnology. Methods: The method involves use of biological reducing agent cum stabilizing agent (capping agent). A comparative account of particle dimension and surface properties of the synthesized nano particles using Broccoli (Brassicaoleracea var.italica) extract is also presented. Results: The reduction process used in the synthesis was simple and convenient to handle and monitored by UV--Vis spectroscopy showing the absorbance maxima of various samples at 322nm, 496nm and 536nm using different solvents. The presence of active proteins and phenolic groups present in biomass before and after reduction was identified by FTIR. Conclusion: The crystalline morphology and size of the Nanoparticles were examined by TEM, SEM and X-ray diffraction studies, which showed the average particle size of Silver Nanoparticles in the range of 40- 50 nm as well as revealed their FCC structure.


Author(s):  
Fouzia Gul Samreen ◽  
Rabeea Muzaffar ◽  
Muhammad Nawaz ◽  
Shahla Gul ◽  
Muhammad Asim Raza Basra

Previously the nanoparticles were synthesized by chemical methods which were costly and toxic to bio-systems. Plant extracts provides simpler, eco-friendly and cost efficient method for synthesizing nanoparticles. Lemon peel extract (LPE) was used to synthesize silver nanoparticles (AgNPs) which were evaluated for their antimicrobial effects after optimizing the pH of extract and concentration of both extract and synthesized AgNPs. The characterization of synthesized AgNPs was carried out using Ultraviolet-Visible (UV-Vis) Spectrophotometer, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Well diffusion method was used to determine the antimicrobial activities of synthesized AgNPs. The presence of phenols and proteins was assumed to reduce the Ag+ ion into silver nanoparticles. The characteristic surface plasmon resonance frequency was observed at 405–425 nm for all varying condition of silver nanoparticles synthesis. Furthermore, results revealed that the synthesized AgNPs remains stable upto 75 days. The average particle size was 2–5 nm, calculated with the help of scherrer’s equation by using XRD data. LPE mediated AgNPs (200 µg/mL) showed significant antimicrobial activity, compared to commercially available nanoparticles while LPE (50 mg/ml) showed no effect. LPE mediated AgNPs might get attention of pharmacists in order to design medicines against different diseases including the infections of bacteria.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
K. R. Nemade ◽  
S. A. Waghuley

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2 nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9 nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value.


Author(s):  
Nayana S. Baste ◽  
Ganesh. D. Basarkar

Natural polymers are the most accepted pharmaceutical excipients of formulator’s choice. The reasons for this are their cost effectiveness, biocompatibility and availability. In this research article natural gum was extracted from the seeds of Samanea saman by using ethanol as a solvent. The physicochemical characterization like Loss on drying, Total ash and Acid insoluble ash, Swelling Index, Viscosity and qualitative evaluation of purified gum was done. The percent yield of gum was found to 6% w/w and the swelling index was found to be 18.5. Total ash value (7.5% w/w) and Acid insoluble ash value (1.4%w/w) shows purity of gum whereas 3.2% w/w loss on drying suggest low moisture content of gum. Chemical evaluation shows presence of carbohydrate. X ray diffraction graph of gum shows crystalline nature. The gum has average particle size 45.0±0.32 to 50±0.18μm, and the surface texture of the particles was found to be rough and irregular by scanning Electron Microscopy. Mucoadhesive property of gum was evaluated by Swelling index, Mucoadhesive force, Shear stress measurement. For this study polymeric tablet of gum with concentrations like 10%, 30%, 50%, 70% and 90 %w/w were formulated and the results shows best mucoadhesive and swelling property. From the above result the gum may be used in the formulation of mucoadhesive dosage form.


2021 ◽  
Vol 6 (1) ◽  
pp. 32-36
Author(s):  
Anh Quoc Le ◽  
Van Phu Dang ◽  
Ngoc Duy Nguyen ◽  
Kim Lan Nguyen Thi ◽  
Kim Lang Vo Thi ◽  
...  

Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag+/Z) prepared by ion exchange reaction between silver nitrate (AgNO3) and zeolite 4A. The effects of the Ag+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were preapared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the platic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry.


2021 ◽  
Vol 15 (2) ◽  
pp. 179-183
Author(s):  
Huaxing Meng ◽  
Zhiwu Chen ◽  
Zhenya Lu ◽  
Xin Wang ◽  
Xiaoyi Fu

Monodispersed tetragonal barium titanate (BaTiO3) nanopowders were synthesized by a convenient hydrothermal route at a low temperature of 200?C in only 24 h. The key point of this method is to promote the generation of ultrafine titanium hydroxide precipitation precursors with the help of absolute ethyl alcohol and ammonia solution during the hydrolysis of Ti(OC4H9)4. The results of X-ray diffraction and Raman spectra show that the as-prepared BaTiO3 nanopowders possess tetragonal-dominant structure. The synthesized tetragonal BaTiO3 nanopowders exhibit relatively uniform size and good dispersity, with the average particle size of 96.1 nm and a tetragonality of 1.0073, which enable broad application prospects in the field of multilayer ceramic capacitors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.


Sign in / Sign up

Export Citation Format

Share Document