Characterizations Of Water Quality In West-Seti and Tamor River Basins, Nepal

2021 ◽  
Vol 14 (14) ◽  
pp. 106-114
Author(s):  
Narayan Prasad Ghimire ◽  
Nita Adhikari ◽  
Ramesh Raj Pant ◽  
Sudeep Thakuri

This study presents the geochemical composition and water quality of waters in the West-Seti and Tamor River basins in Nepal Himalaya with the aim to reveal their hydrochemical characteristics and to evaluate the water quality. Water samples were collected from 18 sites of the rivers in the pre-monsoon season and analysed the physicochemical parameters to characterize their quality. The parameters- temperature, pH, conductivity, and total dissolved solids were measured in the field, while the major ions (Na+, Ca2+, Mg2+, Si4+, SO42−, NO3−, HCO3−, Cl−, and F−) were analyzed in the laboratory. Overall results of physicochemical parameters revealed that the ionic strength is much distinct; however, the waters are chemically pure in both the river basins with very less electrical conductivity (<250 µS/cm) and total dissolved solids (<120 mg/L). Bicarbonate (HCO3−) has a significant correlation with Ca2+ and Mg2+ suggesting carbonate rock weathering as the dominant geochemical process in both of the basins. The concentrations of Ca2+, Mg2+, and HCO3− in the water of the West-Seti is relatively higher than the waters in the Tamor River basin. Mostly, the geochemical facies of both the rivers are characterized by the Ca-Mg-HCO3- type (88.9%), with dominant carbonate dominated lithology. However, hydrochemical facies clearly suggested spatial discrimination between two basins with dominant geogenic signatures as Ca-SO4-Cl type water facies are also reported from the Tamor River basin. The results exhibited that the concentrations of measured parameters were relatively very low and within the WHO guideline values and currently under a safe level of the water quality for drinking and ecosystem health perspectives; however, further in-depth research is recommended in the periodic basis to assess traces of climate change imprints, and anthropogenic interferences for more consistent and reliable dataset. The findings of this study could be useful for the water quality management in the glacier-fed Himalayan River basins.

2021 ◽  
Vol 2 (3) ◽  
pp. 196-203
Author(s):  
Amoo Afeez Oladeji ◽  
Adeleye Adeniyi Olarewaju ◽  
Bate Garba Barde ◽  
Asaju Catherine Iyabo ◽  
Isiaq Saheed Mohammed ◽  
...  

The interface between surface water and groundwater is becoming more complex owing to the effects of climate change and anthropogenic activities these days. In this study, the physicochemical; pH, color, electrical conductivity, total dissolved solids, and turbidity while bacteriological parameters; total and fecal coliform of water samples from River Gashua and its surrounding wells in Gashua local government area of Yobe State were assessed. All the physicochemical parameters were analyzed using water quality standards. Fecal and total coliforms were assayed using the filter membrane technique. The results obtained from the physicochemical parameters of Boreholes (BH1, BH2, and BH3) and hand pump wells (HPW1, HPW2, and HPW3) are within the World Health Organization (WHO) standards. However, the river (R) water sample was found to have a high concentration in total dissolved solids, turbidity, and color than permissible standards. Bacteriological analysis revealed the presence of total and fecal coliform in the water samples; R, BH2, BH3, HPW1, HPW2, and HPW3. The findings indicate that there is a need to protect the quality of the river system. Therefore, it is recommended that government and other stakeholders should take appropriate and corrective actions to avert the continuous discharge of waste products into the river. Again, Yobe State Ministry of Environment should ensure that all public boreholes are routinely subjected to appropriate water assays to ascertain their suitability for human consumption.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Anthony Ewusi ◽  
Isaac Ahenkorah ◽  
Derrick Aikins

AbstractMonitoring of water quality through accurate predictions provides adequate information about water management. In the present study, three different modelling approaches: Gaussian process regression (GPR), backpropagation neural network (BPNN) and principal component regression (PCR) models were used to predict the total dissolved solids (TDS) as water quality indicator for the water quality management. The performance of each model was evaluated based on three different sets of inputs from groundwater (GW), surface water (SW) and drinking water (DW). The GPR, BPNN and PCR models used in this study gave an accurate prediction of the observed data (TDS) in GW, SW and DW, with the R2 consistently greater than 0.850. The GPR model gave a better prediction of TDS concentration, with an average R2, MAE and RMSE of 0.987, 4.090 and 7.910, respectively. For the BPNN, an average R2, MAE and RMSE of 0.913, 9.720 and 19.137, respectively, were achieved, while the PCR gave an average R2, MAE and RMSE of 0.888, 11.327 and 25.032, respectively. The performance of each model was assessed using efficiency based indicators such as the Nash and Sutcliffe coefficient of efficiency (ENS) and the index of agreement (d). The GPR, BPNN and PCR models, respectively, gave an ENS of (0.967, 0.915, 0.874) and d of (0.992, 0.977, 0.965). It is understood from this study that advanced machine learning approaches (e.g. GPR and BPNN) are appropriate for the prediction of water quality indices and would be useful for future prediction and management of water quality parameters of various water supply systems in mining communities where artificial intelligence technology is yet to be fully explored.


1999 ◽  
Vol 40 (10) ◽  
pp. 103-110
Author(s):  
Carlo De Marchi ◽  
Pavel Ivanov ◽  
Ari Jolma ◽  
Ilia Masliev ◽  
Mark Griffin Smith ◽  
...  

This paper presents the major features of two decision support systems (DSS) for river water quality modeling and policy analysis recently developed at the International Institute of Applied Systems Analysis (IIASA), DESERT and STREAMPLAN. DESERT integrates in a single package data management, model calibration, simulation, optimization and presentation of results. DESERT has the flexibility to allow the specification of both alternative water quality models and flow hydraulics for different branches of the same river basin. Specification of these models can be done interactively through Microsoft® Windows commands and menus and an easy to use interpreted language. Detailed analysis of the effects of parameter uncertainty on water quality results is integrated into DESERT. STREAMPLAN, on the other hand, is an integrated, easy-to-use software system for analyzing alternative water quality management policies on a river basin level. These policies include uniform emission reduction and effluent standard based strategies, ambient water quality and least-cost strategies, total emission reduction under minimized costs, mixed strategies, local and regional policies, and strategies with economic instruments. A distinctive feature of STREAMPLAN is the integration of a detailed model of municipal wastewater generation with a water quality model and policy analysis tools on a river basin scale.


Our Nature ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 48-54
Author(s):  
Ram Bhajan Mandal ◽  
Sunila Rai ◽  
Madhav Kumar Shrestha ◽  
Dilip Kumar Jha ◽  
Narayan Prasad Pandit

An experiment was carried to assess the effect of red algal bloom on growth and production of carp, water quality and profit from carp for 120 days at Aquaculture Farm of Agriculture and Forestry University, Chitwan. The experiment included two treatments: carp polyculture in non-red pond and carp polyculture in red pond with algal bloom each with three replicates. Carp fingerlings were stocked at 1 fish/m2 and fed with pellet containing 24% CP at 3% body weight. Net yield of rohu was found significantly higher (p<0.05) in non-red ponds (0.38±0.01 t ha-1) than red ponds (0.24±0.05 t ha-1). Survival of rohu (84.9±1.4%), bighead (95.2±2.0%) and mrigal (88.1±14.4%) were also significantly higher (p<0.05) in non-red ponds than red ponds. Red algal bloom affected DO, nitrate and chlorophyll-a, nitrite, total nitrogen, total phosphorus, total dissolved solids and conductivity. However, overall carp production and profit from carp remained unaffected.


2009 ◽  
Vol 6 (3) ◽  
pp. 898-904
Author(s):  
D. Ilangeswaran ◽  
R. Kumar ◽  
D. Kannan

Various samples of groundwater were collected from different areas of Kandarvakottai and Karambakudi of Pudukkottai District, Tamilnadu and analyzed for their physicochemical characteristics. The results of this analysis were compared with the water quality standards of ISI, WHO and CPHEEO. In this analysis the various physicochemical parameters such as pH, electrical conductivity, turbidity, total dissolved solids, Cl-, F-, SO42-, PO43-, NO3-, NO2-, CN-, Nas+, K+, NH3, Mn, Fe, Ca & Mg hardnessetc., were determined using standard procedures. The quality of groundwater samples were discussed with respect to these parameters and thus an attempt were made to ascertain the quality of groundwater used for drinking and cooking purposes in and around Kandarvakottai and Karambakudi areas.


2003 ◽  
Vol 48 (10) ◽  
pp. 47-53 ◽  
Author(s):  
H. Reuter ◽  
G. Krause ◽  
A. Mönig ◽  
M. Wulkow ◽  
H. Horn

The water quality management tool RIONET for river basins has been developed with regard to the EU Water Framework Directive. The management tool can simulate the water quality in catchment basins not only in the dimension of a single river but in whole river networks. A submodel of the IWA River Water Quality Model No. 1 is used in RIONET. The river model is based on the assumption that self purification processes in the river takes place both in the benthic biofilm and the bulk water phase. Laboratory experiments with sediment cores underline the major role of the benthic biofilm. The input parameters of the management tool such as volumetric flow rates from waste water treatment plants and flow velocities and discharge in the main river and its tributaries can be loaded directly from geographic information systems (GIS). The subcatchment basin of the river Bode in Saxon Anhalt was used for test runs of RIONET.


1996 ◽  
Vol 34 (12) ◽  
pp. 33-40 ◽  
Author(s):  
Y. Hosoi ◽  
Y. Kido ◽  
H. Nagira ◽  
H. Yoshida ◽  
Y. Bouda

The inflow of pollutant load from urban areas and the stagnation of water due to sea water intrusion cause the deterioration of river water quality in tidal zone. In order to improve water quality, various measures such as the reduction of pollutant load by sewage systems, discharge control from sewage treatment plants considering river flow, nutrient removal by aquatic plants, and the dredging of bottom sediments have been examined. The choice of these measures depends on the situation of the river environment and finances. In this study, a field survey was carried out in a typical urban river basin, first. Secondly, on the basis of this survey, a mathematical model was formed to simulate flow and water quality. Several purification alternatives designed for the investigated river basin were comparatively evaluated from the viewpoint of the effect of water quality improvement and their cost. Finally, they were prioritized. Through this case study, a planning process of river water quality management was shown.


2020 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
KEHINDE MONSURU YUSUFF ◽  
M. Lawal ◽  
A. T. Audu ◽  
O. A. Wale-Orojo

The health benefits in the description and observation of quantitative contents of quality parameters present or contained in any water source cannot be underestimated as they determine selection of best choice from available water sources for different intended uses as well as resource consumption. It also helps to compare the observed quantity of the quality with the acceptable standards or limits to get desired results. Physical parameters like pH, temperature, electrical conductivity (EC) and total dissolved solids (TDS) among others are determined by present of other chemical properties like Cations (Mg2+, Ca2+, Na+, etc), Anions (Cl-, NO3-, SO42+, etc), heavy metals and other dissolved materials during the course of its formation in different proportions and amounts. This study observed EC and TDS of 20 selected boreholes as two close and correlated water quality parameters as well as two of the major water quality parameters that account for overall quality of any water source, despite their different quantitative contents and physical features, they are likely determined by the same set of cations and anions with similar constraint equations. In contrast to linear programming, multiple criteria optimization models were fitted for EC and TDS using Response Surface Methodology via desirability techniques, optimal values obtained in this case measured against several criteria are found to lie between acceptable standards limits for drinking water, other numerical values and descriptive features in the final results reflect that the response equations obtained were well fitted.


Sign in / Sign up

Export Citation Format

Share Document