scholarly journals Sheaths and Double Layers with Instabilities

2021 ◽  
Vol 2 (1) ◽  
pp. 70-92
Author(s):  
Reiner L Stenzel ◽  
Johannes Grünwald ◽  
Codrina Ionita ◽  
Roman Schrittwieser ◽  
Manuel Urrutia

The properties of sheaths and associated potential structures and instabilities cover a broad field which even a review cannot cover everything. Thus, the focus will be on about a dozen examples, describe their observations and focus on the basic physical explanations for the effects, while further details are found in the references. Due to familiarity the review focuses mainly on the authors work but compared and referenced related work. The topics start with a high frequency oscillations near the electron plasma frequency. Low frequency instabilities also occur at the ion plasma frequency.The injection of ions into an electron-rich sheath widens the sheath and forms a double layer. Likewise, the injection of electrons into an ion rich sheath widens and establishes a double layer which occurs in free plasma injection into vacuum. The sheath widens and forms a double layer by ionization in an electron rich sheath. When particle fluxes in "fireballs" gets out of balance the double layer performs relaxation instabilities which has been studied extensively. Fireballs inside spherical electrodes create a new instability due to the transit time of trapped electrons. On cylindrical and spherical electrodes the electron rich sheath rotates in magnetized plasmas. Electrons rotate due to $\mathbf E \times \mathbf B_0$ which excites electron drift waves with azimuthal eigenmodes. Conversely a permanent magnetic dipole has been used as a negative electrode. The impact of energetic ions produces secondary electron emission, forming a ring of plasma around the magnetic equator. Such "magnetrons" are subject to various instabilities. Finally, the current to a positively biased electrode in a uniformly magnetized plasma is unstable to relaxation oscillations, which shows an example of global effects. The sheath at the electrode raises the potential in the flux tube of the electrode thereby creating a radial sheath which moves unmagnetized ions radially. The ion motion creates a density perturbation which affects the electrode current. If the electrode draws large currents the current disruptions create large inductive voltages on the electrode, which again produce double layers. This phenomenon has been seen in reconnection currents. Many examples of sheath properties will be explained. Although the focus is on the physics some examples of applications will be suggested such as neutral gas heating and accelerating, sputtering of plasma magnetrons and rf oscillators.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Debdatta Debnath ◽  
Anup Bandyopadhyay

Abstract At the acoustic speed, we have investigated the existence of ion-acoustic solitary structures including double layers and supersolitons in a collisionless magnetized plasma consisting of negatively charged static dust grains, adiabatic warm ions, and nonthermal electrons. At the acoustic speed, for negative polarity, the system supports solitons, double layers, supersoliton structures after the formation of double layer, supersoliton structures without the formation of double layer, solitons after the formation of double layer whereas the system supports solitons and supersolitons without the formation of double layer for the case of positive polarity. But it is not possible to get the coexistence of solitary structures (including double layers and supersolitons) of opposite polarities. For negative polarity, we have observed an important transformation viz., soliton before the formation of double layer → double layer → supersoliton → soliton after the formation of double layer whereas for both positive and negative polarities, we have observed the transformation from solitons to supersolitons without the formation of double layer. There does not exist any negative (positive) potential solitary structures within 0 < μ < μ c (μ c < μ < 1) and the amplitude of the positive (negative) potential solitary structure decreases for increasing (decreasing) μ and the solitary structures of both polarities collapse at μ = μ c, where μ c is a critical value of μ, the ratio of the unperturbed number density of electrons to that of ions. Similarly there exists a critical value β e2 of the nonthermal parameter β e such that the solitons of both polarities collapse at β e = β e2.


2012 ◽  
Vol 19 (12) ◽  
pp. 122308 ◽  
Author(s):  
O. R. Rufai ◽  
R. Bharuthram ◽  
S. V. Singh ◽  
G. S. Lakhina

2021 ◽  
Author(s):  
Naoki Kenmochi ◽  
Yuuki Yokota ◽  
Masaki Nishiura ◽  
H Saitoh ◽  
Naoki Sato ◽  
...  

Abstract The new findings for dynamic process of inward diffusion in the magnetospheric plasma are reported on the RT-1 experiment: (i) The evolution of local density profile in the self-organized process has been analysed by the newly developed tomographic reconstruction applying a deep learning method. (ii) The impact of neutral-gas injection excites low-frequency fluctuations, which continues until the peaked density profile recovers. The fluctuations have magnetic components (suggesting the high-beta effect) which have two different frequencies and propagation directions. The phase velocities are of the order of magnetization drifts, and both the velocities and the intensities increase in proportion to the electron density. The self-regulating mechanism of density profile works most apparently in the naturally made confinement system, magnetosphere, which teaches the basic physics of long-lived structures underlying every stationary confinement scheme.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 93-99
Author(s):  
SEYYED MOHAMMAD HASHEMI NAJAFI ◽  
DOUGLAS BOUSFIELD, ◽  
MEHDI TAJVIDI

Cracking at the fold of publication and packaging paper grades is a serious problem that can lead to rejection of product. Recent work has revealed some basic mechanisms and the influence of various parameters on the extent of crack area, but no studies are reported using coating layers with known mechanical properties, especially for double-coated systems. In this study, coating layers with different and known mechanical properties were used to characterize crack formation during folding. The coating formulations were applied on two different basis weight papers, and the coated papers were folded. The binder systems in these formulations were different combinations of a styrene-butadiene latex and mixtures of latex and starch for two different pigment volume concentrations (PVC). Both types of papers were coated with single and double layers. The folded area was scanned with a high-resolution scanner while the samples were kept at their folded angle. The scanned images were analyzed within a constant area. The crack areas were reported for different types of papers, binder system and PVC values. As PVC, starch content, and paper basis weight increased, the crack area increased. Double layer coated papers with high PVC and high starch content at the top layer had more cracks in comparison with a single layer coated paper, but when the PVC of the top layer was low, cracking area decreased. No measurable cracking was observed when the top layer was formulated with a 100% latex layer.


Author(s):  
Guilherme Borzacchiello ◽  
Carl Albrecht ◽  
Fabricio N Correa ◽  
Breno Jacob ◽  
Guilherme da Silva Leal

2021 ◽  
Vol 13 (8) ◽  
pp. 1485
Author(s):  
Naveen Ramachandran ◽  
Sassan Saatchi ◽  
Stefano Tebaldini ◽  
Mauro Mariotti d’Alessandro ◽  
Onkar Dikshit

Low-frequency tomographic synthetic aperture radar (TomoSAR) techniques provide an opportunity for quantifying the dynamics of dense tropical forest vertical structures. Here, we compare the performance of different TomoSAR processing, Back-projection (BP), Capon beamforming (CB), and MUltiple SIgnal Classification (MUSIC), and compensation techniques for estimating forest height (FH) and forest vertical profile from the backscattered echoes. The study also examines how polarimetric measurements in linear, compact, hybrid, and dual circular modes influence parameter estimation. The tomographic analysis was carried out using P-band data acquired over the Paracou study site in French Guiana, and the quantitative evaluation was performed using LiDAR-based canopy height measurements taken during the 2009 TropiSAR campaign. Our results show that the relative root mean squared error (RMSE) of height was less than 10%, with negligible systematic errors across the range, with Capon and MUSIC performing better for height estimates. Radiometric compensation, such as slope correction, does not improve tree height estimation. Further, we compare and analyze the impact of the compensation approach on forest vertical profiles and tomographic metrics and the integrated backscattered power. It is observed that radiometric compensation increases the backscatter values of the vertical profile with a slight shift in local maxima of the canopy layer for both the Capon and the MUSIC estimators. Our results suggest that applying the proper processing and compensation techniques on P-band TomoSAR observations from space will allow the monitoring of forest vertical structure and biomass dynamics.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2058 ◽  
Author(s):  
Larissa Rolim ◽  
Francisco de Souza Filho

Improved water resource management relies on accurate analyses of the past dynamics of hydrological variables. The presence of low-frequency structures in hydrologic time series is an important feature. It can modify the probability of extreme events occurring in different time scales, which makes the risk associated with extreme events dynamic, changing from one decade to another. This article proposes a methodology capable of dynamically detecting and predicting low-frequency streamflow (16–32 years), which presented significance in the wavelet power spectrum. The Standardized Runoff Index (SRI), the Pruned Exact Linear Time (PELT) algorithm, the breaks for additive seasonal and trend (BFAST) method, and the hidden Markov model (HMM) were used to identify the shifts in low frequency. The HMM was also used to forecast the low frequency. As part of the results, the regime shifts detected by the BFAST approach are not entirely consistent with results from the other methods. A common shift occurs in the mid-1980s and can be attributed to the construction of the reservoir. Climate variability modulates the streamflow low-frequency variability, and anthropogenic activities and climate change can modify this modulation. The identification of shifts reveals the impact of low frequency in the streamflow time series, showing that the low-frequency variability conditions the flows of a given year.


Sign in / Sign up

Export Citation Format

Share Document