scholarly journals Analisis Variasi Beban dan Bentuk Disk Katup Limbah Terhadap Efek Water Hammer

Author(s):  
Gilang Satrio Bawono ◽  
Dwi Khusna ◽  
Zain Lillahulhaq ◽  
Naili Saidatin

Katup merupakan peralatan mekanik statis yang bertujuan untuk mengontrol aliran dan tekanan dalam suatu sistem perpipaan. Pemilihan jenis katup, bentuk desain dan jenis material memiliki peran yang sangat penting dalam kinerja dan kehandalan sistem. Pompa hidram bekerja dengan memanfaatkan proses palu air. Terjadinya palu air akan mengakibatkan sebagian air menuju ke tabung udara dan sebagian lagi akan mengalami aliran balik pada pipa penggerak. Pencegahan water hammer bisa dengan cara pemasangan check valve, relief valve, menambah waktu pembukaan dan penutupan valve. Oleh karena iu pada penelitian ini akan digunakan variasi beban dan bentuk katub limbah terhadap efek water hammer Penelitian ini menggunakan variasi katup limbah champfer,normal dan fillet. Hasil penelitian menunjukan bentuk disk champfer dengan berat beban 200 gram memliliki kecepatan aliran tertinggi yaitu 0,72752  m/s dengan nilai Reynold 18479,21. Sedangan variasi bentuk disk  fillet  memili  nilai  kecepatan  terrendah  dengan  nilai  0.48276 m/s dengan nilai reynold 12262,29.

2019 ◽  
Vol 19 (1) ◽  
pp. 1-12
Author(s):  
Tae-Kook Park ◽  
Yong-Bum Lee ◽  
Jae-Hyeong Kim ◽  
Ki-Chun Lee ◽  
Dong-Cheon Baek

2020 ◽  
Vol 139 ◽  
pp. 107275 ◽  
Author(s):  
Zhida Yang ◽  
Longyu Zhou ◽  
Haoming Dou ◽  
Chuan Lu ◽  
Xiuchun Luan
Keyword(s):  

2012 ◽  
Vol 192 ◽  
pp. 37-41 ◽  
Author(s):  
Hai Bo Meng ◽  
Yong Liu ◽  
Yong Li

A suddenly pump stop in multi-pump parallel connection system could induce water hammer which may cause serious accidents. To prevent water hammer harm, comparing experiments was carried out to study the water hammer phenomenon in the lift closing check-valve adopted system and the shuttle check valve adopted system. The result indicates that, the shuttle check valve greatly cuts the peak-value produced by stop-pump water hammer impulsion, and reduces the probability of bringing a devastating water hammer accident.


Author(s):  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu ◽  
Gaopeng Wang ◽  
Qing Lu

The water hammer induced by abrupt velocity change of fluid flow is inevitable for nuclear power plant systems because of the sudden opening or closing of valves, the sudden startup or shutdown of the pumps and the rupture of pipes. The water hammer pressure wave can damage the pipes and cause the abnormal shutdown of Nuclear Power Plant (NPP). The object of this study is a Parallel Pumps Water Supply system (PPWS) adopted in a NPP. The PPWS is composed of two parallel mixed-flow pumps connected with a check valve separately, a container, a throttle flap and pipe lines. The Method of Characteristic line (MOC) was adopted to evaluate the water hammer behaviors of the PPWS during the alternate startup and shutoff conditions of two parallel pumps. A code was developed using Fortran language to compute the transient behaviors including he peak pressure, the flow velocity and the movement of the valve plate. The results indicate that the water hammer behaviors under low speed startup condition differ from that of high speed startup condition. The maximum pressure vibration amplitude is up to 5.0MPa occurring under high-high speed startup condition. The computation results are instructive for the optimization design of the PPWS so as to minimize the damage potential induced by water hammer.


Author(s):  
L. I. Ezekoye

Check valves are used to minimize flow reversal. In general, the two primary design objectives of installing a check valve in a system include quick opening in forward flow and fast closure in reverse flow. The fast response requirements in both opening and closing directions are challenging. In the opening direction, the concern is to minimize forward flow resistance and, in the reverse direction, the objective is to minimize flow reversal and avoid water hammer. Check valve manufacturers have often used counterweights to permit quick opening or quick closing. The drawback of forward flow counterweight check valves is that in the flow reverse direction, the counterweights may retard valve closure. The location of the counterweight could further complicate the performance of the check valve. Misaligning the counterweight can also affect check valve performance. The use of quick closing counterweights present similar challenges. This paper examines the interaction of counterweight location and alignment on the performance of check valves.


Author(s):  
L. Ike Ezekoye ◽  
Ryan D. Griffin ◽  
William M. Turkowski ◽  
Gregory R. Williams

Gas intrusion into safety related systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) system in nuclear power plants is undesirable and has led to pump binding and damaging water hammer events. Furthermore, total or momentary loss of hydraulic performance in safety related pumps has occurred, which has led to pump damage rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. The U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter GL-2008-01, “Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,” requiring U.S. utilities to demonstrate that suitable design, operation and testing measures are in place to maintain licensing commitments. GL-2008-01 outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits, establishing limits on pump suction void fractions, assuring adequate system venting capability, identifying all possible sources of gas intrusion, preventing vortex formation in tanks and determining acceptable limits of gas in system discharge piping. Regarding one of these issues, GL-2008-01 indicates that the amount of gas that can be ingested without significant impact on pump operability and reliability is not well established and is known to depend on pump design, gas dispersion and flow rate. Each U.S. nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of the U.S. code of federal regulations 10 CFR 50 Appendix B. Typically, gases get into the safety related systems through a number of mechanisms, such as maintenance, gas desorption, vortex activities, cavitation, etc. This paper discusses the sources of gas into safety related systems and the challenges associated with management of gas voids in these systems. A number of technologies exist that can detect the gas that accumulates in the safety related piping. These technologies are discussed and an integrated approach for monitoring gas accumulation in safety related pipes is presented. Issues such as methods to get rid of gases and venting periodicity are discussed. Industry efforts to address the management of gases in these systems are also presented.


2018 ◽  
Vol 246 ◽  
pp. 01066 ◽  
Author(s):  
Xingtao Wang ◽  
Jian Zhang ◽  
Xiaodong Yu ◽  
Lin Shi

The conventional air vessel installation is usually installed behind the check valve at the upstream end of the pipeline to effectively control the water hammer pressure due to pump trip. However, the water hammer pressure caused by underground pipe burst has been neglected. The water hammer protection of air vessel due to pipe burst in long distance water supply system was discussed in this paper. According to analysis of the process of the pipe burst, the mathematical model of underground pipe burst and air vessel were established. A new air vessel installation that was installed in the middle of the pipeline was proposed. The new air vessel installation was simulated by method of characteristics. Then it was compared with the conventional air vessel when the pump trip and the pipe burst occur respectively. The results show that both the conventional air vessel and the new air vessel can effectively protect the water hammer duo to the pump trip. Moreover, when pipe burst occurs, the conventional air vessel cannot achieve the safe operation of the long distance water supply system. However, under the same air vessel type parameters, the new air vessel installation can effectively protect the water hammer pressure.


2011 ◽  
Vol 145 ◽  
pp. 48-52
Author(s):  
Min Kyu Park ◽  
Seok Jo Go ◽  
Jang Sik Park ◽  
Moon Ho Choi ◽  
Chang Dong Kim ◽  
...  

In the case of hydraulic power system of ships or marine facilities, many kinds of mechanical, electrical, hydraulic components are connected to each other very complicatedly. It is very hard to disassemble or reconfigure the hydraulic system. Therefore there are increasing demands from industry for a stand-alone type actuator and a valve remote control system. Valve remote control system (VRCS) is a convenient system which it possible to operate the valves installed in the cargo or ballast tanks from the remote wheelhouse. This paper is dealing with a new stand-alone type hydraulic actuator for a valve remote control system. The stand-alone type hydraulic actuator consists of a gear pump, an AC motor, a check valve, a relief valve and a controller. We try to design and implement the stand-alone type hydraulic actuator and this tries to be verified through an experiment. This research is a contribution to simplify a hydraulic system, improve responsibility of dynamic power system, and reduce an energy loss in a ships or marine facilities.


Sign in / Sign up

Export Citation Format

Share Document