scholarly journals STUDY OF COANDĂ AIR-CONDITIONING SYSTEM COMPATIBLE WITH VARIABLE AIR VOLUME CONTROLS

2022 ◽  
Vol 87 (791) ◽  
pp. 29-39
Author(s):  
Hitomi IGARASHI ◽  
Takashi AKIMOTO ◽  
Nobuhiro HIRASUGA ◽  
Shun KATO ◽  
Yu SAKAMOTO
2018 ◽  
Vol 38 ◽  
pp. 04012
Author(s):  
Sai Feng Xu ◽  
Xing Lin Yang ◽  
Zou Ying Le

For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins’ dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.


2008 ◽  
Vol 12 (3) ◽  
pp. 15-32 ◽  
Author(s):  
Parameshwaran Rajagopalan ◽  
Karunakaran Rajasekaran ◽  
Senthilkumar Alagarsamy ◽  
S. Iniyan ◽  
Mohal Lal

In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.


Sign in / Sign up

Export Citation Format

Share Document