Records of water-level measurements in wells in the Oklahoma panhandle, 1966-70

1972 ◽  
Author(s):  
Donald L. Hart
2010 ◽  
Vol 41 (2) ◽  
pp. 92-103 ◽  
Author(s):  
Peggy Zinke ◽  
Nils Reidar Bøe Olsen ◽  
Jim Bogen ◽  
Nils Rüther

A 3D numerical model was used to compute the discharge distribution in the channel branches of Lake Øyeren's delta in Norway. The model solved the Navier–Stokes equations with the k–ɛ turbulence model on a 3D unstructured grid. The bathymetry dataset for the modelling had to be combined from different data sources. The results for three different flow situations in 1996 and 1997 showed a relative accuracy of the computed discharges within the range of 0 to±20% compared with field measurements taken by an ADCP at 13 cross sections of the distributary channels. The factors introducing the most error in the computed results are believed to be uncertainties concerning the bathymetry. A comparison between the computational results of the older morphology data from 1985–1990 and the model morphology from 1995–2004 indicated that morphological changes in this period had already had consequences for the flow distribution in some channels. Other important error sources were the inevitable use of averaged water level gradients because of unavailable water level measurements within the delta.


Author(s):  
Khaled A. Mohamed

Abu Dhabi Emirate, United Arab Emirates has a unique tidal system. Understanding the tidal hydrodynamics in Abu Dhabi waters is very important for the design of the hydraulic structures and in the marine environmental studies. The objective of this study is to investigate the tidal water levels and tidal motion in Abu Dhabi, making use of the long-term water levels available. To achieve the aim of the study, the National Energy and Water Research Center (NEWRC) of Abu Dhabi Water and Electricity Authority installed tidal gauges at different locations in Abu Dhabi waters to obtain long-term water level measurements. At present, long-term water level measurements for at least 3 years period are available at different locations in Abu Dhabi waters. Tidal analysis was carried out on the available data to determine the characteristics of the tidal wave in Abu Dhabi Emirate and to get the main tidal constituents affecting the tidal motion. The obtained tidal constituents are used in updating and improving the boundary conditions of the numerical hydrodynamic models simulating the flow pattern in Abu Dhabi waters. The set up of the water level measurement program in Abu Dhabi waters and the results of the tidal analysis are presented and discussed in the paper.


2011 ◽  
Vol 11 (3) ◽  
pp. 741-749 ◽  
Author(s):  
T. Schöne ◽  
W. Pandoe ◽  
I. Mudita ◽  
S. Roemer ◽  
J. Illigner ◽  
...  

Abstract. On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 759
Author(s):  
Ioannis Vrouhakis ◽  
Evangelos Tziritis ◽  
Andreas Panagopoulos ◽  
Georgios Stamatis

A combined hydrogeochemical and hydrodynamic characterization for the assessment of key aspects related to groundwater resources management was performed in a highly productive agricultural basin of the Thessaly region in central Greece. A complementary suite of tools and methods—including graphical processing, hydrogeochemical modeling, multivariate statistics and environmental isotopes—have been applied to a comprehensive dataset of physicochemical analyses and water level measurements. Results revealed that the initial hydrogeochemistry of groundwater was progressively impacted by secondary phenomena (e.g., ion exchange and redox reactions) which were clearly delineated into distinct zones according to data processing. The progressive evolution of groundwater was further verified by the variation of the saturation indices of critical minerals. In addition, the combined use of water level measurements delineated the major pathways of groundwater flow. Interestingly, the additional joint assessment of environmental isotopes revealed a new pathway from E–NE (which had never before been validated), thus highlighting the importance of the joint tools/methods application in complex scientific tasks. The application of multivariate statistics identified the dominant processes that control hydrogeochemistry and fit well with identified hydrodynamic mechanisms. These included (as dominant factor) the salinization impact due to the combined use of irrigation water return and evaporitic mineral leaching, as well as the impact of the geogenic calcareous substrate (mainly karstic calcareous formations and dolostones). Secondary factors, acting as processes (e.g., redox and ion exchange), were identified and found to be in line with initial assessment, thus validating the overall characterization. Finally, the outcomes may prove to be valuable in the progression toward sustainable groundwater resources management. The results have provided spatial and temporal information for significant parameters, sources, and processes—which, as a methodological approach, could be adopted in similar cases of other catchments.


2020 ◽  
Author(s):  
David Purnell ◽  
Natalya Gomez ◽  
William Minarik ◽  
Gregory Langston

<p>GNSS-Reflectometry (GNSS-R) is a promising new technique to monitor water levels due to easier and cheaper installation of instruments in remote environments compared to traditional acoustic sensors or pressure gauges. GNSS stations that have been used for reflectometry purposes thus far are designed for monitoring land motion and may cost more than 10,000 USD each. We have found that a low-cost GNSS antenna and receiver (10 USD) can be used to make equally precise water level measurements, with an RMSE of a few centimeters when compared to a collocated acoustic sensor. However, an RMSE of less than one centimeter is typical for water level sensors and this level of accuracy is desired for research purposes. Two of the dominant sources of error in GNSS-R measurements are the effects of random noise in the Signal-to-Noise Ratio (SNR) data and tropospheric delay. Modelling work suggests that these sources of error can be reduced by using multiple low-cost antennas in the same location. In light of this, we have installed an experimental setup of antennas at various locations along the Saint Lawrence River and Initial results show that multiple antennas can be used to provide more precise measurements than a single antenna. Our installations of multiple antennas are less than 5% of the cost of stations that have been used in previous GNSS-R literature. Hence this approach could be applied to install a dense network of water level sensors along rivers, lakes or coastlines at a relatively low cost. We expect that this approach could also be applied to GNSS-R soil moisture or snow depth measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document