scholarly journals Modern Phineas Gage: A Man with a Knife in the Brain

Chon Sum Ong ◽  
Nur Amalina Binti Che Din ◽  
Celine Mien Er Fong ◽  
Amira Nabiha Binti Jamalludin

An accident with a tamping iron made Phineas Gage a historically famous brain-injury survivor. (1) Each year, approximately 1.6 million people sustain traumatic brain injury, leading to 52,000 deaths annually. (2) However, there is limited literature regarding traumatic brain penetration injury that could be found. A 42-year-old male with psychosis forcefully inserted a butter knife through nostril, traversed via sella turcica into posterior corpus callosum in a mental health facility. He was intubated in his local hospital and transferred over to a tertiary hospital for neurosurgical intervention. Radiological imaging showed impingement of knife against the posterior cerebral artery (PCA), multiple brain infarcts, intraventricular, and subarachnoid haemorrhage. The knife was removed after securing the PCA with the collaboration between neurosurgery and interventional radiology team. Sinus repair was immediately performed by the otorhinolaryngologists. External ventricular drain was inserted due to hydrocephalus secondary to brain haemorrhage. He eventually developed ventriculitis leading to sepsis and was treated with multiple antibiotics. The traumatic brain injury led to anterior hypopituitarism and diabetes insipidus which was treated using hormone therapy. He not only survived the fatal brain injury but also regained his Glasgow Coma Scale (GCS) score. This case demonstrates the potential of a multi-disciplinary and specialty approach to achieve outcomes a single specialty team could not. The outcome of a case which was deemed to be a non-survivable brain injury was made different due to the bold decision making, experience and innovative surgical strategy. Future research is needed to better understand and manage brain penetration injury.International Journal of Human and Health Sciences Supplementary Issue-2: 2021 Page: S27

2021 ◽  
Vol 6 (1) ◽  
pp. e000717
Panu Teeratakulpisarn ◽  
Phati Angkasith ◽  
Thanakorn Wannakul ◽  
Parichat Tanmit ◽  
Supatcha Prasertcharoensuk ◽  

BackgroundAlthough there are eight factors known to indicate a high risk of intracranial hemorrhage (ICH) in mild traumatic brain injury (TBI), identification of the strongest of these factors may optimize the utility of brain CT in clinical practice. This study aimed to evaluate the predictors of ICH based on baseline characteristics/mode of injury, indications for brain CT, and a combination of both to determine the strongest indicator.MethodsThis was a descriptive, retrospective, analytical study. The inclusion criteria were diagnosis of mild TBI, high risk of ICH, and having undergone a CT scan of the brain. The outcome of the study was any type of ICH. Stepwise logistic regression analysis was used to find the strongest predictors according to three models: (1) injury pattern and baseline characteristics, (2) indications for CT scan of the brain, and (3) a combination of models 1 and 2.ResultsThere were 100 patients determined to be at risk of ICH based on indications for CT of the brain in patients with acute head injury. Of these, 24 (24.00%) had ICH. Model 1 found that injury due to motor vehicle crash was a significant predictor of ICH, with an adjusted OR (95% CI) of 11.53 (3.05 to 43.58). Models 2 and 3 showed Glasgow Coma Scale (GCS) score of 13 to 14 after 2 hours of observation and open skull or base of skull fracture to be independent predictors, with adjusted OR (95% CI) of 11.77 (1.32 to 104.96) and 5.88 (1.08 to 31.99) according to model 2.DiscussionOpen skull or base of skull fracture and GCS score of 13 to 14 after 2 hours of observation were the two strongest predictors of ICH in mild TBI.Level of evidenceIII.

Donald E. G. Griesdale ◽  
Jonathan McEwen ◽  
Tobias Kurth ◽  
Dean R. Chittock

Purpose:To determine our institutional adherence to the Brain Trauma Foundation guidelines with respect to intracranial pressure (ICP) monitoring, and examine the relationship between external ventricular drain (EVD) use and mortality.Materials & Methods:Retrospective cohort study of 171 patients with severe traumatic brain injury (TBI). Propensity score adjusted logistic regression was used to model the association between EVD use and mortality.Results:EVDs were inserted in 98 of 171 patients. Of the 73 patients without an EVD, 63 (86%) would have qualified for ICP monitoring under the current guidelines. EVDs werein situfor a median of 8 days (SD 6). In adjusted analyses, EVD use was associated with hospital mortality (OR 2.8, 95% CI: 1.1 - 7.1, p=0.04) and 28-day mortality (OR 2.1, 95% CI: 0.80 - 5.6, p=0.13). We observed significant modification of the association between EVD and 28-day mortality by GCS within 12 hours (p-interaction = 0.04), indicating strong association only among those patients with GCS score of at least 6 (OR 5.0, 95% CI: 1.5 - 16.7, p<0.01).Conclusions:The association of EVD with 28-day mortality was only apparent among patients with GCS score of ≥ 6. Further research is warranted to further refine which patients may benefit from ICP monitoring.

2021 ◽  
Vol 12 ◽  
Colleen N. Bodnar ◽  
James B. Watson ◽  
Emma K. Higgins ◽  
Ning Quan ◽  
Adam D. Bachstetter

Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain’s health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers’ functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.

2020 ◽  
Vol 5 (1) ◽  
pp. 88-96
Mary R. T. Kennedy

Purpose The purpose of this clinical focus article is to provide speech-language pathologists with a brief update of the evidence that provides possible explanations for our experiences while coaching college students with traumatic brain injury (TBI). Method The narrative text provides readers with lessons we learned as speech-language pathologists functioning as cognitive coaches to college students with TBI. This is not meant to be an exhaustive list, but rather to consider the recent scientific evidence that will help our understanding of how best to coach these college students. Conclusion Four lessons are described. Lesson 1 focuses on the value of self-reported responses to surveys, questionnaires, and interviews. Lesson 2 addresses the use of immediate/proximal goals as leverage for students to update their sense of self and how their abilities and disabilities may alter their more distal goals. Lesson 3 reminds us that teamwork is necessary to address the complex issues facing these students, which include their developmental stage, the sudden onset of trauma to the brain, and having to navigate going to college with a TBI. Lesson 4 focuses on the need for college students with TBI to learn how to self-advocate with instructors, family, and peers.

2019 ◽  
Emily L. Dennis ◽  
Karen Caeyenberghs ◽  
Robert F. Asarnow ◽  
Talin Babikian ◽  
Brenda Bartnik-Olson ◽  

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population; however, research in this population lags behind research in adults. This may be due, in part, to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. Specific developmental issues also warrant attention in studies of children, and the ever-changing context of childhood and adolescence may require larger sample sizes than are commonly available to adequately address remaining questions related to TBI. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate-Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis. In this paper we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. We conclude with recommendations for future research in this field of study.

2018 ◽  
pp. 110-119

Primary Objectives: By extending the scope of knowledge of the primary care optometrist, the brain injury population will have expanded access to entry level neurooptometric care by optometric providers who have a basic understanding of their neurovisual problems, be able to provide some treatment and know when to refer to their colleagues who have advanced training in neuro-optometric rehabilitation.

2019 ◽  
Vol 23 (6) ◽  
pp. 670-679
Krista Greenan ◽  
Sandra L. Taylor ◽  
Daniel Fulkerson ◽  
Kiarash Shahlaie ◽  
Clayton Gerndt ◽  

OBJECTIVEA recent retrospective study of severe traumatic brain injury (TBI) in pediatric patients showed similar outcomes in those with a Glasgow Coma Scale (GCS) score of 3 and those with a score of 4 and reported a favorable long-term outcome in 11.9% of patients. Using decision tree analysis, authors of that study provided criteria to identify patients with a potentially favorable outcome. The authors of the present study sought to validate the previously described decision tree and further inform understanding of the outcomes of children with a GCS score 3 or 4 by using data from multiple institutions and machine learning methods to identify important predictors of outcome.METHODSClinical, radiographic, and outcome data on pediatric TBI patients (age < 18 years) were prospectively collected as part of an institutional TBI registry. Patients with a GCS score of 3 or 4 were selected, and the previously published prediction model was evaluated using this data set. Next, a combined data set that included data from two institutions was used to create a new, more statistically robust model using binomial recursive partitioning to create a decision tree.RESULTSForty-five patients from the institutional TBI registry were included in the present study, as were 67 patients from the previously published data set, for a total of 112 patients in the combined analysis. The previously published prediction model for survival was externally validated and performed only modestly (AUC 0.68, 95% CI 0.47, 0.89). In the combined data set, pupillary response and age were the only predictors retained in the decision tree. Ninety-six percent of patients with bilaterally nonreactive pupils had a poor outcome. If the pupillary response was normal in at least one eye, the outcome subsequently depended on age: 72% of children between 5 months and 6 years old had a favorable outcome, whereas 100% of children younger than 5 months old and 77% of those older than 6 years had poor outcomes. The overall accuracy of the combined prediction model was 90.2% with a sensitivity of 68.4% and specificity of 93.6%.CONCLUSIONSA previously published survival model for severe TBI in children with a low GCS score was externally validated. With a larger data set, however, a simplified and more robust model was developed, and the variables most predictive of outcome were age and pupillary response.

2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.

Sign in / Sign up

Export Citation Format

Share Document