scholarly journals An Assessment of Water Budget of Ibadan, Nigeria

2022 ◽  
Vol 07 (01) ◽  
pp. 105-115
Author(s):  
K. A. Iroye

The influence of climatic conditions of precipitation and evapotranspiration exercise great control on soil water budget. This is fundamental to crop production and hydrological processes. This study assessed the temporal variability of soil moisture condition of Ibadan, Nigeria using the water budget approach. Specifically the study analyzed the climatic variables of monthly rainfall and means monthly air temperature, computed the mean monthly evapotranspiration values, plots the water budget graph, and discussed the implications of the observed seasonal trend in water budget condition on agricultural activities and hydrological processes. Monthly rainfall and mean monthly air temperature data used were collected from the archives of the Nigeria meteorological agency for the period 2008-2020. Monthly potential evapotranspiration data used in the study was estimated from the mean monthly air temperature data. The monthly rainfall data and the monthly evapotranspiration data were used to plot the water budget graph. Results revealed temporal variability in soil moisture condition. Water deficit condition was observed between November and April while water surplus condition was observed between May and October. The highest water surplus condition was observed in September (111.9mm) while the highest deficit condition (-125.64mm) was observed in December. The month of October recorded the lowest water surplus condition (41.30mm) while the month of April recorded the lowest water deficit condition (-10.10mm). The implications of the observed seasonal variation in soil moisture status on agricultural activities and hydrological processes were discussed.

2021 ◽  
Vol 13 (1) ◽  
pp. 167-202
Author(s):  
Musa Oladejo Kehinde ◽  
Aliyu Tambuwal Umar

The estimation of soil moisture storage is fundamental to crop production, hydrological and biological processes. This study assessed soil moisture storage in Nigeria using the Climatic Water Budgeting Approach. Mean monthly air temperature and monthly rainfall data were collected from the archives of the Nigerian Meteorological Agency from 27 weather stations in Nigeria. The data were subjected to Climatic Water Budgeting Approach to compute the monthly soil moisture storage at different locations in Nigeria over two years with contrasting moisture conditions (1983 and 2003). The mean monthly air temperature data were used to estimate the monthly potential evapotranspiration (PE) while the PE in conjunction with the mean monthly rainfall and the soil water holding capacity of 250mm were used to calculate the monthly soil moisture storage. The results showed that most locations north of latitude 9°N recorded low soil moisture storage below 10 mm from April to July especially in 1983. The soil moisture storage was high in all the places in January and February due to low potential evapotranspiration and accumulated potential water loss (APWL). Most Places South of latitude 9°N recorded higher soil moisture storage between 20 mm and 100 mm from January to May compared to their counterparts north of latitude 9°N in both 1983 and 2003. The soil moisture storage attained 250 mm (100%) from July-October across Nigeria. This study concluded that the soil moisture varies spatially and temporally in Nigeria decreasing from South to North. A paired sample test revealed a significant difference between the soil moisture storage of 2003 and 1983 in Nigeria (p=.000).


2012 ◽  
Author(s):  
Raheleh Malekian ◽  
Robert Gordon ◽  
Ali Madani ASABE Member ◽  
Seyyed Ebrahim Hashemi

1979 ◽  
Vol 27 (3) ◽  
pp. 191-198
Author(s):  
J.H. Smelt ◽  
A. Dekker ◽  
M. Leistra

The decomposition of oxamyl in four soils under moist conditions was measured in incubation experiments at 15 deg C. Half-lives of oxamyl in soils with moisture tensions of approx. -9.8 X 103 Pa were 13 days in a clay loam, 14 days in a loamy sand, 34 days in a peaty sand and 39 days in a humic loamy sand. The rate of oxamyl decomposition in the clay loam decreased with decreasing soil moisture content down to values for below wilting point. Oxamyl decomposition in the humic loamy sand decreased with decreasing soil moisture content, but increased sharply in the very dry range. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2011 ◽  
Vol 3 (3) ◽  
pp. 170 ◽  
Author(s):  
Ailton Marcolino Liberato ◽  
José Ivaldo B. De Brito

A presente pesquisa teve por objetivo investigar possíveis alterações em componentes do balanço hídrico climático, associadas a diferentes cenários (A2 e B2) das mudanças climáticas do IPCC, para a Amazônia Ocidental (Acre, Amazonas, Rondônia e Roraima). Os dados climatológicos de temperatura do ar e totais de precipitação pluvial usados como referência neste estudo, são oriundos do INMET (1961-2005), da CEPLAC (1983-1999) e da reanálise do NCEP/NCAR (1983-1995). O método utilizado na elaboração do balanço hídrico é o de Thornthwaite e Mather (1957) modificado por Krishan (1980). Os resultados das projeções mostram tendência de clima mais seco, diminuição na umidade do solo, redução na vazão dos rios, aumento no risco de incêndio e diminuição no escoamento superficial e sub-superficial para a Amazônia Ocidental até 2100.Palavras-chave: cenários, índices climáticos, Amazônia. Influence of Climate Change on Water Budget of Western Amazonia ABSTRACTThe main objective of this study was investigate possible alterations in the climatic water budget components associated with different scenarios (A2 and B2) of the IPCC to Amazonian Western (Acre, Amazonas, Rondônia and Roraima). The climatological data of air temperature and precipitation from the INMET (1961-2005), CEPLAC (1983-1999) and NCEP/NCAR reanalysis (1983-1995) were used in the present study. The Thornthwaite and Mather (1955) method was used in the elaboration of the climatic water budget modified by Krishan (1980). The results of the projections show drier climate trends and decrease of the soil moisture, reduction in the rivers discharge, increase in the fire risk and decrease in the runoff for the Amazonian Western up to 2100. Keywords: scenarios, climate index, Amazonian.


1969 ◽  
Vol 93 (3-4) ◽  
pp. 149-171
Author(s):  
Jorge L. Lugo-Camacho ◽  
Miguel A. Muñoz ◽  
Juan Pérez-Bolívar ◽  
Gregory R. Brannon

Soil temperature measurements from a climate monitoring network in Puerto Rico were evaluated and the difference between mean summer and mean winter soil temperature, known as isotivity value, was calculated. Air and soil temperature was collected from five weather stations of the USDA-Natural Resources Conservation Service from sea level to 1,019 m above sea level and from different soil moisture regimes. Isotivity values ranged from 1.2 to 3.9° C with an average of 2.6° C. The 750-m elevation was identified as the limit between the isohyperthermic and isothermic soil temperature regimes in the perudic soil moisture regime in Puerto Rico. The greatest differences between mean annual soil temperature and mean annual air temperature were observed at Guánica, Combate and Guilarte (2.1 ° C) stations. The smallest differences were observed at Maricao (0.8° C) and Isabela (1.8° C) stations. The study also indicated that the mean annual soil temperature in Puerto Rico can be estimated by adding 1.8° C to the mean annual air temperature or by the equation y = -0.007x + 28.0° C. The equation indicates that 97 percent of the time the behavior of the mean annual soil temperature is a function of elevation. According to the updated soil temperature regime boundaries, eight soil series were established in the Soil Survey of San Germán Area. In an area under the isothermic soil temperature regime, four soil series were classified as Oxisols (Haploperox), two soil series as Inceptisols (Eutrudepts) and two soil series as Mollisols (Argiudolls). This is the first field recognition of the Haploperox soil great group in the United States and its territories.


Author(s):  
Tiago de M. Inocêncio ◽  
Alfredo Ribeiro Neto ◽  
Alzira G. S. S. Souza

ABSTRACT The sequence of drought events in the Northeast of Brazil in recent decades raises attention to the importance of studying this phenomenon. The objective of this study was to evaluate the duration and severity of drought events from 1988 to 2018 in hydrographic basins of the state of Pernambuco, Brazil, using two drought indexes: Standardized Soil Moisture Index and Soil Moisture Condition Index, calculated based on data of the Soil Moisture Project of the European Space Agency’s Climate Change Initiative. The duration of the droughts was determined considering the months between their beginning and end, and their severity was based on the area formed in the graph between the curve of the index and the x-axis. The soil moisture database showed to be a promising tool for the analysis and monitoring of drought events in the Northeast region of Brazil, mainly for analysis and monitoring of drought events. The indexes allowed the evaluation of the drought phenomenon over the 30-year period, showing increases from 2012, which were more pronounced in the Semiarid region. The hydrographic basins responded differently to a same event, depending on the climate characteristics of the region in which they are located. Consecutive years with rainfall below the historical mean increased the magnitude of the droughts, as found for the 2012-2017 period, in which the indexes presented delays to return to more favorable values, showing the effect that one drought year has on the following year.


2010 ◽  
Vol 7 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Kyung Won Seo ◽  
Su Jin Heo ◽  
Yowhan Son ◽  
Nam Jin Noh ◽  
Sue Kyoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document