Experimental Shock Tube Test Time - Turbulent Regime

Shock Tubes ◽  
1970 ◽  
pp. 126-142 ◽  
Author(s):  
John J. Lacey
AIAA Journal ◽  
1965 ◽  
Vol 3 (5) ◽  
pp. 960-961
Author(s):  
PETER JEANMAIRE ◽  
ERIC F. BROCKER

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bo Xu ◽  
Tailin Han ◽  
Hong Liu ◽  
Xiao Wang ◽  
Mingchi Ju

In the process of transient test, due to the insufficient bandwidth of the pressure sensor, the test data is inaccurate. Firstly, based on the projection of the shock tube test signal in the sparse domain, the feature expression of the signal sample is obtained. Secondly, the problem of insufficient bandwidth is solved by inverse modeling of sensor dynamic compensation system based on swarm intelligence algorithm. In this paper, the method is used to compensate the shock tube test signals of the 85XX series pressure sensors made by the Endevco company of the United States, the working bandwidth of the sensor is widened obviously, the rise time of the pressure signal can be compensated to 12.5 μs, and the overshoot can be reduced to 8.96%. The repeatability of dynamic compensation is verified for the actual gun muzzle shock wave test data, the results show that the dynamic compensation can effectively recover the important indexes such as overpressure peak value and positive pressure action time, and the original shock wave signal is recovered from the high resonance data.


2021 ◽  
Author(s):  
Momoha Nishimura ◽  
Masashi Yamakawa ◽  
Shinichi Asao ◽  
Seiichi Takeuchi ◽  
Mehdi Badri Ghomizad

Abstract This study proposes a method where the flow field variables are communicated between multiple separate moving computational domains and simulates the flow interaction of multiple moving objects. Instead of using the conventional approach with a single fixed computational domain covering the whole flow field, this method advances the moving computational domain (MCD) method in which the computational domain itself moves in line with the motions of an object inside. The computational domains created around each object move independently, and the flow fields of each domain interact where the flows cross. This eliminates the spatial restriction for simulating multiple moving objects. After the results of the shock tube test verify that the interpolation has been achieved between grids, a validation test is conducted in which two spheres are crossed, and the forces exerted on one object due to the other’s crossing at a short distance are calculated. The results verify the reliability of this method and show that it is applicable to the flow interaction of multiple moving objects.


2011 ◽  
Vol 78 (6) ◽  
Author(s):  
Weiping Xu ◽  
Elizabeth K. Ervin

Extreme loads events can cause enormous human and infrastructure losses. Computer modeling is the key to reducing the high cost of dynamic monitoring and experimentation. Engineers in various fields have undertaken complicated modeling for structures under abnormal loads. However, an efficient and accurate model is necessary to more rapidly address dangerous shock problems. Composite materials have replaced metals in various applications thanks to their superior shock resistance properties. This investigation particularly relates to their usage on naval ships to achieve improved blast survivability with the additional benefit of lower cost. A relatively simple model is detailed for the approximate centerline response prediction of the specific complex case of composite materials tested in a shock tube. A modal analysis simulation of a beam is performed using gross properties as well as physical geometry and arbitrary shock. Closed form equations have been employed to derive the eigenproblem that generates mode shapes and natural frequencies, and the resulting responses are compared to experimental shock tube test results. The best outcome was generated by the simplest model consisting of a shock pressure pulse averaged in two divisions and applied over the entire beam span. For this case, the simulation and experimental responses had reasonable correlation for fractured E-glass/vinyl-ester composite specimens with both nanoclay and graphite platelet reinforcement. This model is also a conservative estimate for the transient test deflection range for all other specimens.


Shock Waves ◽  
2010 ◽  
Vol 21 (1) ◽  
pp. 1-17 ◽  
Author(s):  
C. Frazier ◽  
M. Lamnaouer ◽  
E. Divo ◽  
A. Kassab ◽  
E. Petersen

Sign in / Sign up

Export Citation Format

Share Document