scholarly journals Organic substances replenishment and high humus content of soil in the apple orchads under different fertilization

Author(s):  
P. H. Kopytko ◽  
◽  
R. V. Yakovenko ◽  
I. P. Petryshyna

The balance of humus in a meter layer of dark gray, podzolized soil and podzolized chernozem of the experimental apple orchads and the study of their long-term fertilization was investigated (from the planting to 50-year old trees) with the use of organic (40 t/ha of cattle manure) and mineral fertilizers (N120P120K120), which were applied once in two years in autumn under the plowing in the row spacings at a depth of 18 20 cm. In the 20-year period (from 30- to 50-year-old experimental gardens) in a meter layer of dark gray podzolized soil on the non-fertilized control plots the amount of humus increased by 27 t/ha, and on the plots fertilized with manure – by 7 t/ha more and on the plots with mineral fertilizers – by 6 t/ha less and in podzolized chernozem – 37 t/ha and 3 t/ha more and 10 t/ha less respectively. Such changes in humus storage were caused by different replenishment of organic substances, and, to a greater extent, an increase in the biological activity of the fertilized soil, in particular the intensity of mineralization processes of organic matter, and in particular the humus compounds. Also, the replanishment of such soils in the gardens by the organic mass of fallen leaves and thin (d≤1mm) small roots, which systematically grows and dies, providing root nutrition of fruit plants, was investigated. These sources supplemented with organic substances the layer of soil of 0 20 cm – with all the mass of leaves and 38,5 43,3% of the total roots, and the increase in humus content was in all roots of the layer of 0 60 cm: in non-fertilized areas of 11 t/ha in dark gray soil and 18 tons per hectare in chernozem, under organic fertilizers, by 14 and 19 t/ha, and under mineral fertilizers – by 3 and 9 t/ha respectively. The greatest quantity of humus was added in the layer 60 100 cm: 16 and 19 t/ha, 20 and 21 t/ha and 18 t/ha. Such results were conditioned by the intensification of biological activity, in particular mineralization processes, in the upper layers of fertilized soils at higher humus content, as well as the migration of soluble humus substances deep into the meter profile.

2011 ◽  
Vol 39 (1) ◽  
pp. 107
Author(s):  
Mignon S. SANDOR ◽  
Traian BRAD ◽  
Aurel MAXIM ◽  
Constantin TOADER

A mesocosm study was conducted in order to evaluate the effects of short-term rainfall and temperature variation on soil microbial biomass and bacteria to fungi ratio. In addition, the relation between the decomposition process of two organic fertilizers, cattle manure and barley straw, and the activity of soil microbial biomass was also studied. In order to assess the effect of biological activity on soil fertility the dynamics of soil pH, N-NO3-, N-NH4+, Corg and Nt during plant growing season was measured. The results suggest that short-term variation of climate had a significant effect on microbial biomass with dry periods distinguished by a reduced microbial biomass compared to wet periods. The ratio bacteria to fungi seems also to be sensitive to variations in rainfall and temperature regime, however further studies are required to draw a definitive conclusion. Regarding the type of fertilizer used, the straw treatments showed higher microbial biomass than the manure treatments, but higher decomposition rate was observed in manure fertilized soil. The effect of soil biological activity on soil pH was limited for both manure and straw treatments while the changes of the soil nitrate amounts are related to the microbial biomass. The study indicates that nitrate immobilization and mineralization processes are influenced by meteorological conditions and microbial biomass dynamics. In contrast, soil organic carbon and total nitrogen did not seem to be affected by variations in temperature, rainfall and microbial activity.


2015 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
V. Lopushniak

Aim. To establish the effect of different fertilization systems in short fi eld crop rotation on the change in the state of humus in the dark gray podzolic soils in Western Forest-Steppe of Ukraine. Methods. Field studies were carried out in a stationary experiment of the Department of Soil Science and Agricultural Chemistry of the L’viv National Agrarian University; determination of humus content – according to DSTU 4289:2004, and that of its labile forms – in accordance with DSTU 4732:2007, fraction-group composition – by Ponomare- va-Plotnikova’s method, according to the measurement procedure 31-497058-008-2002. Results. The use of organo-mineral fertilizer system in short fi eld crop rotation with the saturation of organic fertilizers of 15 t/ha of crop rotation contributes to the humus content increase by 0.7 % after the third rotation in 0–40 cm layer of dark gray podzolic soil, the increase in the share of stable forms of humic compounds up to 57–59 % and the increase in the ratio of R HA :R FA to 1.3–1.4. The study demonstrated very high dependence of amount of gross energy reserves in the humus on the R HA :R FA ratio. Conclusions. The combined application of organic fertili- zers in the form of manure, non-market of the crop (straw) and siderate, along with mineral fertilizers is re- commended in short fi eld crop rotations of Western Forest-Steppe of Ukraine toensure expanded reproduction of fertility of dark gray podzolic soil, improvement of its humus status, increase in gross energy reserves and the share of the stable forms and humic acids in the humus.


2020 ◽  
Vol 21 (2) ◽  
pp. 160-168
Author(s):  
N. A. Kodochilova ◽  
T. S. Buzynina ◽  
L. D. Varlamova ◽  
E. A. Katerova

The studies on assessment of changes in the content and composition of soil organic matter under the influence of the systematic use of mineral fertilizers (NPK)1, (NPK)2, (NPK)3 against the background of the aftereffect of single liming in doses of 1.0 and 2.0 h. a. (control – variants without fertilizers and lime) were conducted in the conditions of the Nizhny Novgorod region in a long – term stationary experiment on light-grey forest soil. The research was carried out upon comple-tion of the fifth rotation of the eight-field crop rotation. The results of the study showed that for 40 years (from 1978 to 2018) the humus content in the soil (0-20 cm) decreased by 0.19-0.52 abs. % in variants as compared to the original (1.60 %); though, humus mineralization was less evident against the background of long-term use of mineral fertilizers compared to non-fertilized control. The higher humus content in the topsoil was noted in the variants with minimal (NPK)1 and increased (NPK)2 doses of fertilizer – 1.41 and 1.25 %, respectively. The humus content in non-fertilized soil and when applying high (NPK)3 doses of mineral fertilizers was almost identical – 1.08-1.09 %. The predominant group in the composition of humus were humic acids, the content of which in the experiment on average was 37.8 % of the total carbon with an evident decrease from 42.6 % in the control to 31.8% when applying increased doses of mineral fertilizers. The aftereffect of liming, carried out in 1978, was unstable and did not significantly affect the content and composition of soil organic matter.


2019 ◽  
Vol 52 (1) ◽  
pp. 113
Author(s):  
Oleg Goryanin ◽  
Anatoly Chichkin ◽  
Baurzhan Dzhangabaev ◽  
Elena Shcherbinina

<p>The influence of long-term use of mineral and organic fertilizers, crop rotations, plant residues, soil treatment systems on humus content of common chernozems and stabilization of productivity of field crops in the arid conditions of the Middle Volga region is considered on the example of researches in the Samara area. The zone climate of field experiments is characterized as extremely continental. The sum of the active temperatures (above 10°C) is 2,800-3,000°C. The average annual rainfall is 454.1 mm with fluctuations over the years from 187.5 mm to 704.6 mm. At some years, precipitation does not happen within a month or more. Hydrothermal index in May-August is 0,7, the duration of the frost-free period is 149 days. If the humus content in the region is 4.35-4.52%, then, it is necessary to introduce 6.7-8.0 t/ha of manure per year to maintain the balance of the deficit. The introduction of biological methods for the conservation and reproduction of soil fertility (green fertilizers, perennial grasses, straw as fertilizer) reduces the loss of humus by 0.15-0.24 t/ha. This makes it possible to increase the payback of mineral fertilizers, which must be taken into account when developing fertility reproduction systems for soils. In the variants with minimal and differentiated cultivation of the soil during crop rotation in 30 years of the study, the loss of humus in the 0-30 cm layer decreased by 0.04 - 0.73% (43-789 kg per year with maximum values in the combination of direct seeding of spring crops with deep loosening for a number of crop rotations is 4.14%, significantly exceeding the control (by 0.54%). The decrease in soil fertility in the variants with constant plowing and minimal tillage contributed to an increase in the conjugation of productivity of crops with humus. Based on the research, in order to preserve the fertility of the soil of ordinary chernozem, it is necessary to use green fertilizer, leguminous perennial grasses. In the regional rotations of crop production, new generation technologies are recommended, the basis of which is differentiated tillage with the use of crushed straw as fertilizer.</p>


Author(s):  
Hasanova Aynur Oruj, Et. al.

The experience of developed countries in the field of agriculture and research results show that high efficiency from mineral fertilizers can be obtained on fertile soils. That is, the soil should contain a large amount of organic substances, microelements, beneficial microorganisms, various enzymes that activate microbiological processes, normalize and optimize the nutritional, thermal and water-physical properties of the soil. This can be achieved by regularly applying crop residues and organic fertilizers to the soil. Siderata - green fertilizers - are of great importance for increasing soil fertility.


2021 ◽  
Vol 6 (48) ◽  
pp. 16-16
Author(s):  
Shima Mohammadi ◽  

For the studied saline soils, the expediency of assessing the content of mobile ion compounds by chemical autography based on electrolysis and ionite membranes, vertical electrical sensing is shown. However, the electrical conductivity of soils depended on humidity, temperature, humus content, granulometric composition, soil density, and fertilizer application. The change in the nature and degree of soil salinization over time and in space was determined not only by the microrelief of the surface, groundwater and the change in the depth of the umbrellas in density, but also by the patterns of solubility of salts from humidity, temperature, pCO2, complex formation. For relative optimization of the situation, it is recommended to apply mineral fertilizers, stimulants, organic fertilizers, and create a large-porous layer at a depth of 40-70 cm, reducing the upward current from the lower layers of the soil to the Ap. Keywords: SOIL, SALINIZATION, WAYS OF OPTIMIZATION


2020 ◽  
Vol 4 (2) ◽  
pp. 281-288
Author(s):  
O. O. Vinyukov ◽  
A. P. Dudkina ◽  
T. V. Shevchenko

Barley is a crop, requires the availability of available nutrients in the soil, especially at the be-ginning of the growing season. The aim of the research was to determine the effectiveness of the aftereffect of using vermicompost when growing spring barley on different backgrounds in the Donetsk region. The studies were carried out according to the methodology of the field experiment of B. A. Dospehova. Research methods: field, supplemented by analytical studies, measurements, calculations and observations. The studies were conducted in 2017–2019 by laboratory-field method in field crop rotation in the experimental sections of the Donetsk SSES NAAS. The repetition in the experiments is 3-fold. The location of the plots is systematic. The soil is alkaline-chernozemic carbonate, having an average supply of mineral nitrogen and mobile phosphorus, low – potassium. The humus content of 4,2 % indicates a high potential soil fertility, but to realize the potential of the culture, additional application of phosphorus-potassium fertilizers is necessary. The technology for growing crops is generally accepted for the farms of the region, with the ex- ception of the factors studied. Variety of barley spring Avers. The experience scheme provides for: control (without fertilizers); background – saturation of crop rotation with vermicompost granular 2 t/ha; background + N30P30K30; background + N60P60K60; N30P30K30. The use of organic fertilizers under the predecessor in crop rotation provided improve nutriti-on conditions for plants, which positively affected the growth and development of spring barley plants. So, on the variants with the use of mineral fertilizers, the highest indices of the number of productive stems and the structure of the crop were noted in the background. The variant where N60P60K60 was added in the background produced the largest mass of 1000 grains – 49,8 g, which is 4,6 % higher than the control. Analysis of the study indicates the positive effect of the aftereffect of organic fertilizer (ver-micompost) on the yield of spring barley. The maximum yield of spring barley was obtained against the background of aftereffect of vermicompost 2 t/ha and the application of mineral fertilizers N60P60K60 – 5,05 t/ha, but due to high production costs, the profitability level is 114,9 %. The application of organic fertilizers under the background provides a yield of 3,67 t/ha and the highest level of profitability of 140,6 %. The optimal technological option provides for the introduction of mineral fertilizers in the norm N30P30K30 amid predecessor saturation with vermicompost. This allows increasing the yield up to 4,90 t/ha (by 1,46 t/ha or 42,4 % to the control) and obtaining a profitability level of 136,1 %. The use only of mineral fertilizer N30P30K30 in severely arid weather conditions of the steppe zone allows increasing the yield by 0,70 t/ha compared to the control but, due to the high cost of pro-duction, leads to a low production profitability of 99,6 %. Key words: spring barley, background, vermicompost, mineral fertilizers, yield, economic effici-ency.


2021 ◽  
Vol 13 (29) ◽  
pp. 102-109
Author(s):  
Olga Georgieva ◽  
◽  
Natalia Karadzhova ◽  

The article presents studies on the influence of the microbiological product “Trichodermine”, bio-organic fertilizers and growth regulators based on humic acids „Nagro”, „Stimix”, „BioLife” and mineral fertilizers (NPK) on the biological activity of the soil, the degree of disease, caused by Alternaria capsici-annui Savul & Sandu and pepper yield in field production. It has been found that the differences in the "Soil Biological Activity" indicator depends on the number of micro-organisms, the composition (species diversity) and the percentage of major Micromycetes. Organic products help optimize soil health and reduce the total content of fungal colonies, and in the Micromycetes composition the fungus Trichoderma sp. is more common. When mineral fertilizers are introduced, the number of fungal pathogens and toxin producers increases. A higher total yield was obtained in variants with biological treatment. The increase in yield is between 9% and 29%.


Author(s):  
S. Hudz ◽  
L. Skivka ◽  
O. Prysiazhniuk ◽  
Ya. Tsvei

The aim of the study was comparative evaluation of microbiological processes occurring in the soil and rhizosphere during the soybean cultivation in the conditions of short-term rotation with the use of different fertilizer systems. Methods.The content of ammoniating, amylolytic, pedotrophic, oligotrophic, asporousmicroorganisms, and micromycetes was determined. The soil and rhizosphere microbiological processes were characterized by mineralization – immobilization, oligotrophism, and pedotrophism coefficients. The use of ecological and biological fertilizer systems was accompanied by the increase of ammoniating microorganisms in the soybean budding phase. The use of exclusively mineral fertilizers of soybean has only significantly increased the development of microorganisms which use nitrogen of mineral compounds. The number of oligotrophic microorganisms was the highest, indicating that the stocks of readily available nutrients were depleted and that humification processes were intensified. For the ecological system of fertilizers, the coefficient of nitrogen mineralization-immobilization was 0.72-0.83, and for the biological system was the lowest 0.60-0.99. It confirms the equilibrium of the processes of mineralization and immobilization. The oligotrophic coefficients for the ecological and biological fertilizer systems at the stages of budding and browning of beans indicate the good availability of soil microbiota with easily digestible organic substances. The use of an ecological fertilizer system with a balanced combination of mineral and organic fertilizers and a biological fertilizer system with modern organic fertilizers and humates increases the activity of soil microbiota and improves the processes of organic compound transformation.


2020 ◽  
Vol 11 (3) ◽  
pp. 97-104
Author(s):  
O. A. Litvinova ◽  
◽  
D. V. Litvinov ◽  
S. E. Dehodiuk ◽  
O. V. Dmitrenko ◽  
...  

The article presents the results of research on the biological activity of gray forest soil depending on the systematic use of organic and mineral fertilizers. It is established that effective reproduction of humus in gray forest soil is provided by organo-mineral (12 t of manure together with N80P60K80 application per 1 ha of crop rotation area) and organic (24 t/ha of manure), respectively 36,5 t/ha, and 35,6 t/ha. The application of only mineral fertilizers in the norm of N80P60K80 per 1 ha of crop rotation area resulted in a decrease in humus reserves by 9 % relative to the initial level (32,4 t/ha). The highest degree of humification of organic matter provided the option of applying organic fertilizers (60 t/ha) both separately – 36,0% and compatible with mineral – (60 t/ha manure + N80P60K80) – 34 %. Prolonged use of organic and mineral fertilizers in crop rotation significantly increased the total number of microorganisms in the soil. The result was increased decomposition of organic matter and increased release of CO2 from the soil. The areas with the highest biological activity and CO2 intensity were characterized by areas where the soil was systematically enriched with fresh organic matter. The intensity of biological processes in the organo-mineral system increased by 67 % relative to the variant without fertilizers and by 30 % relative to the variant with only N80P60K80. The use of organic and mineral fertilizers in one system stimulated the process of decomposition of fiber – at the level of 78,5 %, which in percentage terms exceeded the value of the indicators obtained for a purely mineral fertilizer system.


Sign in / Sign up

Export Citation Format

Share Document