Common Data Format Archiving of Large-Scale Intelligent Transportation Systems Data for Efficient Storage, Retrieval, and Portability

2003 ◽  
Vol 1836 (1) ◽  
pp. 111-117
Author(s):  
Taek M. Kwon ◽  
Nirish Dhruv ◽  
Siddharth A. Patwardhan ◽  
Eil Kwon

Intelligent transportation system (ITS) sensor networks, such as road weather information and traffic sensor networks, typically generate enormous amounts of data. As a result, archiving, retrieval, and exchange of ITS sensor data for planning and performance analysis are becoming increasingly difficult. An efficient ITS archiving system that is compact and exchangeable and allows efficient and fast retrieval of large amounts of data is essential. A proposal is made for a system that can meet the present and future archiving needs of large-scale ITS data. This system is referred to as common data format (CDF) and was developed by the National Space Science Data Center for archiving, exchange, and management of large-scale scientific array data. CDF is an open system that is free and portable and includes self-describing data abstraction. Archiving traffic data by using CDF is demonstrated, and its archival and retrieval performance is presented for the Minnesota Department of Transportation–s 30-s traffic data collected from about 4,000 loop detectors around Twin Cities freeways. For comparison of the archiving performance, the same data were archived by using a commercially available relational database, which was evaluated for its archival and retrieval performance. This result is presented, along with reasons that CDF is a good fit for large-scale ITS data archiving, retrieval, and exchange of data.

Author(s):  
Corinna Schmitt ◽  
Georg Carle

Today the researchers want to collect as much data as possible from different locations for monitoring reasons. In this context large-scale wireless sensor networks are becoming an active topic of research (Kahn1999). Because of the different locations and environments in which these sensor networks can be used, specific requirements for the hardware apply. The hardware of the sensor nodes must be robust, provide sufficient storage and communication capabilities, and get along with limited power resources. Sensor nodes such as the Berkeley-Mote Family (Polastre2006, Schmitt2006) are capable of meeting these requirements. These sensor nodes are small and light devices with radio communication and the capability for collecting sensor data. In this chapter the authors review the key elements for sensor networks and give an overview on possible applications in the field of monitoring.


Author(s):  
Mirko Franceschinis ◽  
Luca Gioanola ◽  
Massimiliano Messere ◽  
Riccardo Tomasi ◽  
Maurizio A. Spirito ◽  
...  

The concept of big Data for intelligent transportation system has been employed for traffic management on dealing with dynamic traffic environments. Big data analytics helps to cope with large amount of storage and computing resources required to use mass traffic data effectively. However these traditional solutions brings us unprecedented opportunities to manage transportation data but it is inefficient for building the next-generation intelligent transportation systems as Traffic data exploring in velocity and volume on various characteristics. In this article, a new deep intelligent prediction network has been introduced that is hierarchical and operates with spatiotemporal characteristics and location based service on utilizing the Sensor and GPS data of the vehicle in the real time. The proposed model employs deep learning architecture to predict potential road clusters for passengers. It is injected as recommendation system to passenger in terms of mobile apps and hardware equipment employment on the vehicle incorporating location based services models to seek available parking slots, traffic free roads and shortest path for reach destination and other services in the specified path etc. The underlying the traffic data is classified into clusters with extracting set of features on it. The deep behavioural network processes the traffic data in terms of spatiotemporal characteristics to generate the traffic forecasting information, vehicle detection, autonomous driving and driving behaviours. In addition, markov model is embedded to discover the hidden features .The experimental results demonstrates that proposed approaches achieves better results against state of art approaches on the performance measures named as precision, execution time, feasibility and efficiency.


2012 ◽  
Vol 4 (4) ◽  
pp. 38-60 ◽  
Author(s):  
Junia Valente ◽  
Frederico Araujo ◽  
Rym Z. Wenkstern

The advances in Intelligent Transportation Systems (ITS) call for a new generation of traffic simulation models that support connectivity and collaboration among simulated vehicles and traffic infrastructure. In this paper we introduce MATISSE, a complex, large scale agent-based framework for the modeling and simulation of ITS and discuss how Alloy, a modeling language based on set theory and first order logic, was used to specify, verify, and analyze MATISSE’s traffic models.


Sign in / Sign up

Export Citation Format

Share Document