scholarly journals INFLUENCE OF WALL SCATTERING EFFECT ON ELECTRONS GAS DYNAMICS PARAMETERS IN ELECTRIC PROPULSION THRUSTERS WITH CLOSED ELECTRON DRIFT

Author(s):  
Guo Zongshuai, ◽  
Huang Zhihao

The analysis is represented of some works devoted to the mathematical modeling of processes in plasma-ion thrusters and Hall effect thrusters. It is shown that the common in these works is the use of approximate forms of the equations of gas dynamics, which are applicable to the description of relatively dense gases, but not to analyze the processes in the rarefied plasma of electric propulsion thrusters. As a result, the above mathematical models do not represent the processes that are significantly responsible for the values of the thruster operating parameters.Authors try to partially correct this drawback by insertion into the initial approximate forms of the equations written for a point in the plasma volume, the parameters that actually represent the boundary effects and should be written not in the equations of gas dynamics themselves, but in the boundary conditions for these equations.The most complete forms of the necessary equations are given in this paper. It is shown that it is necessary to take into account electrons thermal conductivity as well as at least one (radial-azimuth) component of viscosity tensor to describe the "wall scattering" effect.It is concluded that the most productive approach in mathematical modeling is to write the most complete forms of equations with their subsequent simplification – removing the terms responsible for the processes recognized on the basis of primary numerical estimates as such, which can be neglected.

Author(s):  
Boris A. Sokolov ◽  
Pavel A. Shcherbina ◽  
Ivan B. Sishko ◽  
Aleksandr V. Shipovskiy Aleksandr ◽  
Aleksandr A. Lyapin ◽  
...  

The paper demonstrates the feasibility of using iodine as propellant for thrusters with closed electron drift and its economic viability. It describes a test setup for running experiments. It provides the results of experimental studies of the stationary plasma thruster using iodine as its propellant with xenon gas-passage hollow cathode, as well as of the operational mode of the thruster where a mixture of xenon and iodine is used. During tests gas dynamic and electrical properties of the thruster were analyzed. Thermal conditions in the iodine storage and supply system were studied. Conclusions were drawn on how the test object could be improved and upgraded. The paper describes the option to use a thermionic non-flow cathode as the compensator cathode for the operation of the iodine thruster. The paper provides the results of an experimental study of the prototype non-flow compensator cathode in diode mode. Based on the results of the studies an experimental facility was built for testing a thruster with non-flow compensator cathode. Key words: cathode, compensator cathode, thruster with closed electron drift, stationary plasma thruster, iodine.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


2001 ◽  
Author(s):  
Y. Raitses ◽  
D. Staack ◽  
A. Smirnov ◽  
A. Litvak ◽  
L. Dorf ◽  
...  

2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1877-1884 ◽  
Author(s):  
Diego Alarcón ◽  
Eduardo. Balvís ◽  
Ricardo Bendaña ◽  
Alberto Conejero ◽  
de Fernández ◽  
...  

We present a detailed study of heating and cooling processes in LED luminaires with passive heat sinks. Our analysis is supported by numerical simulations as well as experimental measurements, carried on commercial systems used for outdoor lighting. We have focused our analysis on the common case of a single LED source in thermal contact with an aluminum passive heat sink, obtaining an excellent agreement with experimental measurements and the numerical simulations performed. Our results can be easily expanded, without loss of generality, to similar systems.


Sign in / Sign up

Export Citation Format

Share Document