scholarly journals METHOD OF LINES IN DISTRIBUTED PROBLEMS OF EXPERIMENTAL DATA PROCESSING

Author(s):  
Gennady Shvachych ◽  
Nataliіa Vozna ◽  
Ivashchenko Olena ◽  
Oleksandr Bilyi ◽  
Dmytro Moroz

In many cases, the mathematical support of non-stationary thermal experiments is based on methods for solving the inverse heat conduction problem (IHCP), which include boundary thermal conditions determination, identification of heat and mass transfer processes, restoration of external and internal temperature fields, etc. However, at present, the main field of the IHCP application remains the processing and interpretation of the results of the thermal experiments. It was here where the most considerable theoretical and applied successes were achieved in methods' effectiveness and the breadth of their practical use. This paper highlights the issues of mathematical modeling of multidimensional non-stationary problems of metallurgical thermophysics.The primary research purpose aims at solving problems associated with identifying parallel structures of algorithms and programs and their reflection in the computers’ architecture in solving a wide range of applied problems. Supercomputers are currently inaccessible due to the enormous cost and service price. In this regard, a real alternative is cluster-type computing systems by which the simulation results are covered in this paper.Being a relatively new technology, cluster-type parallel computing systems are useful in solving a large class of non-stationary multidimensional problems, while allowing to increase the productivity and quality of computations. The software developed in this paper can be used to plan and process the results of a thermophysical experiment. The algorithms developed in the application program package are simply reconstructed to solve other coefficient and boundary problems of thermal conductivity. The developed algorithms for solving thermophysical problems are highly accurate and efficient: the test solution for IHCP with accurate input data coincides with the thermophysical features of the sample material. The developed software for processing the results of a thermophysical experiment is self-regulating. Moreover, it is quite merely tuned to the solution of others and, in particular, of boundary IHCP.

1997 ◽  
Vol 119 (3) ◽  
pp. 406-412 ◽  
Author(s):  
L. Elde´n

We consider a Cauchy problem for the heat equation in the quarter plane, where data are given at x = 1 and a solution is sought in the interval 0 < x < 1. This inverse heat conduction problem is a model of a situation where one wants to determine the surface temperature given measurements inside a heat-conducting body. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. In an earlier paper we showed that replacement of the time derivative by a difference stabilizes the problem. In this paper we investigate the use of time differencing combined with a “method of lines” for solving numerically the initial value problem in the space variable. We discuss the numerical stability of this procedure, and we show that, in most cases, a usual explicit (e.g., Runge-Kutta) method can be used efficiently and stably. Numerical examples are given. The approach of this paper is proposed as an alternative way of implementing space-marching methods for the sideways heat equation.


Sign in / Sign up

Export Citation Format

Share Document