scholarly journals On the boundedness of solution of the second order ordinary differential equation with damping term and involution

2021 ◽  
Vol 102 (2) ◽  
pp. 16-24
Author(s):  
A. Ashyralyev ◽  
◽  
M. Ashyralyyeva ◽  
O. Batyrova ◽  
◽  
...  

In the present paper the initial value problem for the second order ordinary differential equation with damping term and involution is investigated. We obtain equivalent initial value problem for the fourth order ordinary differential equations to the initial value problem for second order linear differential equations with damping term and involution. Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear differential equation with damping term and involution is proved. Theorem on existence and uniqueness of bounded solution of initial value problem for second order ordinary nonlinear differential equation with damping term and involution is established.

Author(s):  
Farrukh Nuriddin ugli Dekhkonov

In this paper, we consider with a class of system of differential equations whose argument transforms are involution. In this an initial value problem for a differential equation with involution is reduced to an initial value problem for a higher order ordinary differential equation. Than either two initial conditions are necessary for a solution, the equation is then reduced to a boundary value problem for a higher order ODE.


1982 ◽  
Vol 37 (8) ◽  
pp. 830-839 ◽  
Author(s):  
A. Salat

The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f{ω1t, ω2t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω1, ω2, a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained.The equation considered is a model for the magneto-hydrodynamic “continuum” in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently ir-rational magnetic surfaces


2015 ◽  
Vol 08 (04) ◽  
pp. 1550076 ◽  
Author(s):  
A. Adesoji Obayomi ◽  
Michael Olufemi Oke

In this paper, a set of non-standard discrete models were constructed for the solution of non-homogenous second-order ordinary differential equation. We applied the method of non-local approximation and renormalization of the discretization functions to some problems and the result shows that the schemes behave qualitatively like the original equation.


2021 ◽  
Vol 18 (6) ◽  
Author(s):  
R. I. Abdulganiy ◽  
Higinio Ramos ◽  
O. A. Akinfenwa ◽  
S. A. Okunuga

AbstractA functionally-fitted Numerov-type method is developed for the numerical solution of second-order initial-value problems with oscillatory solutions. The basis functions are considered among trigonometric and hyperbolic ones. The characteristics of the method are studied, particularly, it is shown that it has a third order of convergence for the general second-order ordinary differential equation, $$y''=f \left( x,y,y' \right) $$ y ′ ′ = f x , y , y ′ , it is a fourth order convergent method for the special second-order ordinary differential equation, $$y''=f \left( x,y\right) $$ y ′ ′ = f x , y . Comparison with other methods in the literature, even of higher order, shows the good performance of the proposed method.


1984 ◽  
Vol 7 (1) ◽  
pp. 151-158
Author(s):  
L. E. Levine ◽  
W. C. Obi

The successive terms in a uniformly valid multitime expansion of the solutions of constant coefficient differential equations containing a small parameterϵmay be obtained without resorting to secularity conditions if the time scalesti=ϵit(i=0,1,…)are used. Similar results have been achieved in some cases for equations with variable coefficients by using nonlinear time scales generated from the equations themselves. This paper extends the latter approach to the general second order ordinary differential equation with slowly varying coefficients and examines the restrictions imposed by the method.


2003 ◽  
Vol 2003 (14) ◽  
pp. 813-821 ◽  
Author(s):  
L. Birbrair ◽  
M. Sobolevsky ◽  
P. Sobolevskii

Focal decomposition associated to an ordinary differential equation of the second order is a partition of the set of all two-points boundary value problems according to the number of their solutions. Two equations are called focally equivalent if there exists a homomorphism of the set of two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.


2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Kong Xiang-Cong ◽  
Zheng Zhao-Wen

Using the comparison theorem, the two-point oscillation for linear differential equation with damping term is considered, where . Results are obtained that or imply the two-point oscillation of the equation.


2014 ◽  
Vol 12 (05) ◽  
pp. 523-536 ◽  
Author(s):  
Chelo Ferreira ◽  
José L. López ◽  
Ester Pérez Sinusía

We consider the second-order linear differential equation [Formula: see text] where x ∈ [0, X], X > 0, α ∈ (-∞, 2), Λ is a large complex parameter and g is a continuous function. The asymptotic method designed by Olver [Asymptotics and Special Functions (Academic Press, New York, 1974)] gives the Poincaré-type asymptotic expansion of two independent solutions of the equation in inverse powers of Λ. We add initial conditions to the differential equation and consider the corresponding initial value problem. By using the Green's function of an auxiliary problem, we transform the initial value problem into a Volterra integral equation of the second kind. Then using a fixed point theorem, we construct a sequence of functions that converges to the unique solution of the problem. This sequence has also the property of being an asymptotic expansion for large Λ (not of Poincaré-type) of the solution of the problem. Moreover, we show that the idea may be applied also to nonlinear differential equations with a large parameter.


Sign in / Sign up

Export Citation Format

Share Document