scholarly journals Nonhomogeneous Euclidean first-passage percolation and distance learning

Bernoulli ◽  
2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Pablo Groisman ◽  
Matthieu Jonckheere ◽  
Facundo Sapienza
2011 ◽  
Vol 48 (02) ◽  
pp. 366-388 ◽  
Author(s):  
Eckhard Schlemm

We consider the first passage percolation problem on the random graph with vertex set N x {0, 1}, edges joining vertices at a Euclidean distance equal to unity, and independent exponential edge weights. We provide a central limit theorem for the first passage times l n between the vertices (0, 0) and (n, 0), thus extending earlier results about the almost-sure convergence of l n / n as n → ∞. We use generating function techniques to compute the n-step transition kernels of a closely related Markov chain which can be used to explicitly calculate the asymptotic variance in the central limit theorem.


1985 ◽  
Vol 22 (4) ◽  
pp. 766-775
Author(s):  
Norbert Herrndorf

We consider first-passage percolation in an infinite horizontal strip of finite height. Using methods from the theory of Markov chains, we prove a central limit theorem for first-passage times, and compute the time constants for some special cases.


2004 ◽  
Vol 36 (03) ◽  
pp. 824-838 ◽  
Author(s):  
B. M. Hambly ◽  
Jonathan Jordan

We consider a sequence of random graphs constructed by a hierarchical procedure. The construction replaces existing edges by pairs of edges in series or parallel with probability p. We investigate the effective resistance across the graphs, first-passage percolation on the graphs and the Cheeger constants of the graphs as the number of edges tends to infinity. In each case we find a phase transition at


2015 ◽  
Vol 25 (1) ◽  
pp. 373-405 ◽  
Author(s):  
Antonio Auffinger ◽  
Michael Damron ◽  
Jack Hanson

Sign in / Sign up

Export Citation Format

Share Document