scholarly journals Clinical pharmacology of lorazepam in infants and children

2022 ◽  
Vol 3 (1) ◽  
pp. 01-07
Author(s):  
Gian Maria Pacifici

Lorazepam is a benzodiazepine has antiepileptic activity; it may be administered intravenously, intramuscularly, orally, by intranasal or buccal application and following oral dosing it is well absorbed. In infants, the initial intravenous dose of lorazepam is 100 µg/kg and in children the initial oral and intravenous dose is 50 to 100 µg/kg and the dose varies according to the child age. Lorazepam has been found efficacy and safe in infants and children but it may induce adverse-effects. Lorazepam is a racemate and the R and S enantiomers are conjugated with glucuronic acid in human liver microsomes and the respective Km and Vmax values are 29+8.9 and 36+10 µM and 7.4+1.9 and 10+3.8 pmol/min*mg. Lorazepam interacts with drugs and the interaction may affect the activity or metabolism of lorazepam. The pharmacokinetics of lorazepam have been studied in infants and children and in diseased children. In infants and children the elimination half-life is about 15 hours and it is about 24 hours and about 37 hours in children with severe malaria and convulsions following intravenous and intramuscular administration, respectively. The treatment and trials with lorazepam have been studied in infants and children. Lorazepam freely crosses the human placenta and poorly migrates into the breast-milk. The aim of this study is to review the published data on lorazepam dosing, efficacy and safety, adverse-effects, metabolism, interaction with drugs, pharmacokinetics, treatment and trials in infants and children and the lorazepam transfer across the human placenta and migration into the breast-milk.

2021 ◽  
Vol 4 (5) ◽  
pp. 01-08
Author(s):  
Gian Maria Pacifici

Morphine is used to treat pain, for treatment of opioid dependence, and neonatal abstinence syndrome. Morphine is modestly absorbed from the gastrointestinal tract whereas after rectal administration, by intranasal or buccal application morphine is well absorbed. Morphine is eliminated by glomerular filtration and by conjugation with glucuronic acid; morphine-3-glucurinide and morphine-6-glucurinide are the main metabolites and the last has analgesic effect. In infants, morphine is used to treat severe or sustained pain, sedation, and pain relief. In children, morphine is used to control pain and morphine may be administered by subcutaneous or intravenous injection, orally, by rectum, or by continuous subcutaneous infusion and morphine dose varies according to the child age. Morphine has been found efficacy and safe in infants and children but may induce adverse-effects. The effects caused by morphine and the treatment with morphine have been studied in infants and children. In newborns, morphine elimination half-life ranges from 7.7 to 13.5 hours and decreases with infant maturation. In newborns, infants and children, the total body clearance of morphine ranges from 14.5 to 71.1 L/h/70kg and increases with infant maturation and child development. Morphine is transported in the human brain, poorly crosses the human placenta and accumulates in breast-milk. The aim of this study is to review the published data on morphine dosing, efficacy and safety, effects, adverse-effects, pharmacokinetics, metabolism, drug interaction, treatment, transport into human brain of infants and children and morphine transfer across the human placenta and migration into the breast-milk.


2022 ◽  
Vol 3 ◽  
pp. 01-08
Author(s):  
Gian Maria Pacifici

Fentanyl is a systemic opioid related to the phenylpiperidines, it is used in anaesthetic practice and in analgesia and the analgesic effect is about 100 times higher than that of morphine. Fentanyl is highly lipid soluble, rapidly crosses the blood-brain-barrier, and fentanyl concentrations rapidly decline in plasma and cerebrospinal fluid. Fentanyl causes respiratory depression and decreases the heart rate through vagal activation. Fentanyl may be administered intravenously, orally, by transdermal, intranasal or by buccal application and the oral bioavailability is poor. In infants, fentanyl is given for short term use, sustained use, and during therapeutic hypothermia. In children, fentanyl is given intravenously, by transdermal application, or by buccal administration and the fentanyl dose varies with the child age and body-weight. Fentanyl has been found efficacy and safe in infants and children but it may induce adverse-effects and fentanyl causes different effects in infants and children. Following intravenous administration of fentanyl to infants and children, the fentanyl elimination half-life ranges from 208 to 1,266 min and the distribution volume ranges from 1.92 to 15.2 L/kg. Such variability is due to the wide variation of subject’s demographic characteristics. Fentanyl interacts with drugs, the treatment and trials with fentanyl have been studied in infants and children. Fentanyl freely crosses the human placenta and poorly migrates into the breast-milk. The aim of this study is to review fentanyl dosing, efficacy, safety, effects, adverse-effects, metabolism, pharmacokinetics, drug interaction, treatment, and trials in infants and children, and fentanyl placental transfer and migration into the breast-milk.


2021 ◽  
Vol 4 (4) ◽  
pp. 01-08
Author(s):  
Gian Maria Pacifici

Sildenafil is a competitive and selective inhibitor of phosphodiesterase 5. Sildenafil is cleared by hepatic CYP3A (major route) and CYP2C9 (minor route) and concomitant administration of potent CYP3A inducers (e.g., bosentan) causes decreases in plasma levels of sildenafil. CYP3A4 inhibitors (erythromycin and cimetidine) inhibit sildenafil metabolism prolonging the half-life and elevating blood levels of sildenafil. Sildenafil is a pulmonary arterial vasodilator and it has been used in the treatment of persistent pulmonary hypertension. The initial oral dose is 250 to 500 µg/kg 4 times-daily in infants and the oral dose is 10 to 20 mg thrice-daily in children with a body-weight up to 20 kg or > 20 kg, respectively. Sildenafil has been found efficacy and safe in infants and children but it may induce adverse-effects. Following an oral dosing, the absorption rate constant is 0.343 h-1, and the elimination half-life is 2.41 hours in children suggesting that sildenafil is rapidly absorbed and eliminated. The interaction of sildenafil with drugs and the metabolism of sildenafil have been extensively studied. The principal routes of sildenafil metabolism are: N-demethylation, oxidation, and aliphatic dihydroxylation, and the major metabolite is N-desmethyl sildenafil. The treatment of infants and children with sildenafil has been extensively studied. Sildenafil citrate and sildenafil cross the human placenta and sildenafil migrates into the breast-milk in significant amounts. The aim of this study is to review the sildenafil dosing, efficacy and safety, effects, adverse-effects, pharmacokinetics, interaction with drugs, metabolism, treatments, and sildenafil placental transfer and migration into the breast-milk.


2022 ◽  
Vol 5 (1) ◽  
pp. 01-08
Author(s):  
Gian Maria Pacifici

Levetiracetam inhibits focal and secondary generalized tonic-clonic seizures. The mechanism of levetiracetam action is not fully understood, however the correlation between binding affinity of levetiracetam and its analogues and their potency toward audiogenic seizures suggest that the synaptic vesicle glycoprotein 2A mediates the anticonvulsant effects of levetiracetam. The neural function of the synaptic vesicle 2A protein is not fully understood, but binding of levetiracetam to synaptic vesicle glycoprotein 2A might affect neuronal excitability by modifying the release of glutamate GABA through an action on vesicular function. Synaptic vesicle glycoprotein 2A may plain a role in vesicle recycling following exocytosis of neurotransmitter. In addition, levetiracetam inhibits N-type Ca2+ channels and Ca2+ release from intracellular stores. Levetiracetam may be administered intravenously or orally to infants and children and in children the levetiracetam dose varies according to the child age and body-weight. Levetiracetam is almost completed absorbed after oral administration and levetiracetam is found efficacy and safe in infants and children but it may induce adverse-effects. The levetiracetam elimination half-life is about 6 hours in infants and children, and in children the renal clearance is similar to the non-renal clearance. The prophylaxis, treatment, and trials with levetiracetam have been extensively studied in infants and children. Levetiracetam freely crosses the human placenta and freely migrates into the breast-milk. The aim of this study is to review the levetiracetam dosing, efficacy, safety, adverse-effects, pharmacokinetics, prophylaxis, treatment, and trials and transfer of levetiracetam across the human placenta and levetiracetam migration into the breast-milk.


2022 ◽  
Vol 3 ◽  
pp. 01-07
Author(s):  
Gian Maria Pacifici

The main clinical use of the neuromuscular blocking agents is an adjuvant in surgical anaesthesia to obtain relaxation of skeletal muscle, particularly of the abdominal wall, to facilitate surgical manipulations. Rocuronium can be used instead of suxamethonium to provide rapid muscle paralysis during tracheal intubation but the recovery is much slower. Rocuronium is administered intravenously to infants and children. In infants, rocuronium is administered at a dose of 450 µg/kg for providing muscle relaxation for laryngeal intubation. To provide sustained paralysis, rocuronium is given at a dose of 600 µg/kg. In children, the neuromuscular blockade is obtained with 600 µg/kg followed by an intravenous infusion of 150 µg/kg per hour. For assisted ventilation in intensive care, rocuronium is administered at a dose of 600 µg/kg followed by an intravenous infusion of 300 to 600 µg/kg per hour. The effects of rocuronium have been extensively studied in infants and children. Rocuronium is converted into 17-desacetyl rocuronium. The pharmacokinetics of rocuronium have been studied in infants and children and the mean residence time is 55.6 and 25.6 min (P-value < 0.01) in infant and children, respectively. Rocuronium interacts with drugs, the treatment of infants and children with rocuronium has been studied, and rocuronium poorly crosses the human placenta. The aim of this study is to review the published data on rocuronium dosing, pharmacokinetics, and treatment in infants and children, and rocuronium metabolism and transfer across the human placenta.


1996 ◽  
Vol 30 (11) ◽  
pp. 1316-1322 ◽  
Author(s):  
Marcia L Buck

OBJECTIVE: TO provide a comprehensive review of warfarin use in infants and children, including recommendations for appropriate dosage and monitoring parameters. DATA SOURCES: A MEDLINE search (1966-1995) was used to identify pertinent English-language articles in the medical literature. The key search term was warfarin. Additional material was obtained from references cited in articles retrieved through MEDLINE. STUDY SELECTION: All articles involving children younger than 18 years were evaluated. In addition, articles on the pharmacokinetics and pharmacodynamics in adults, adverse effects, and drug interactions were included. DATA EXTRACTION: Material selected for review included clinical trials, case reports, and surveys of practice. DATA SYNTHESIS: Warfarin has been used as prophylactic therapy in children with prosthetic cardiac valves as well as for prevention of thromboembolic complications associated with autoimmune disorders and protein C or protein S deficiency. Warfarin also has been used to prevent embolization in children with deep-vein thrombosis or clots in central venous catheters. According to the literature, an initial dosage of 0.1 mg/kg/d should provide anticoagulation without significant adverse effects. As in adults, dosing should be adjusted to achieve a target international normalized ratio (INR). Although the target range in children is not well established, INR values of 1.5–3 are recommended for most patients. Higher values have been used in children with prosthetic cardiac valves and hereditary clotting disorders. CONCLUSIONS: Due to its infrequent use, there is limited information on the effects of warfarin in children. Basic guidelines for initiating and monitoring warfarin were developed by using data gathered from clinical trials, retrospective reviews, case series, and surveys of practice.


1988 ◽  
Vol 113 (3) ◽  
pp. 559-563 ◽  
Author(s):  
Gideon Koren ◽  
Allan Lau ◽  
Julia Klein ◽  
Cheryl Golas ◽  
Monica Bologa-Campeanu ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Yuliati Amperaningsih ◽  
Siska Aulia Sari ◽  
Agung Aji Perdana

<p>WHO in WHA reported that 60% of direct and indirect infant deaths were caused by malnutrition and 2/3 of these deaths were associated with poor feeding practices in infants and children. Based on PSG results in 2016, Lampung and Bandar Lampung acute and chronic community nutritional problems (short prevalence ≥20% and thin ≥5%). The purpose of this study is to know the pattern of giving of breast milk in infants aged 6-24 months in the work area of Puskesmas Kota Baru New Town Bandar Lampung in 2017. This research is a qualitative research with phenomenology approach. Information obtained by conducting in-depth interviews, FGD, and observation. Informants in this study consisted of 5 main informants, 2 informants triangulation. The results showed that the form of MP-ASI have given for the age of 6-8 months and 12-24 months was appropriate but for 9-11 months age was not yet appropriate. The amount given is still less than the need with the frequency of giving 2-3 times a day plus 2 times a distraction. Type of MP-ASI is a local MP-ASI and MP-ASI manufacturer. How to serve in the form of dilute and liquid who fed by the mother. Raw food ingredients are stored separately with cooked foods. Feeding meals and suggestions are from their own mothers. Advice for MP-ASI counselors to provide regular and recorded counseling so that the stages and success of counseling can be evaluated.</p>


Sign in / Sign up

Export Citation Format

Share Document