scholarly journals ISOTHERM OF SOLUBILITY MANGANESE SULFATE - MONOETHANOLAMINE - WATER AT 25 ° C

Author(s):  
B. Zakirov ◽  
M. Zhumanova ◽  
D. Isabaev ◽  
S. Zhumadullaeva

Solubility in the ternary system manganese sulfate - monoethanolamine - water at 25°C was studied by isothermal method. The equilibrium in the system was controlled by liquid phase analysis. True equilibrium in the system was established within 7 hours. The new compound was isolated in crystalline form and identified by the methods of chemical, graphic, X-ray and thermal analyses. It was found that the new compound is a crystalline substance with an individual set of interplanar distances and line intensities. The formation of the new compound NH2C2H4ON-MnSO4-3H2O which was identified by the methods of chemical, graphic and X-ray analyses has been established. Preliminary agrochemical tests of aqueous solution of the new compound showed its positive properties as a stimulant.

2019 ◽  
Vol 75 (7) ◽  
pp. 904-909 ◽  
Author(s):  
Daniel Nicholls ◽  
Carole Elleman ◽  
Norman Shankland ◽  
Kenneth Shankland

A new crystalline form of αβ-D-lactose (C12H22O11) has been prepared by the rapid drying of an approximately 40% w/v syrup of D-lactose. Initially identified from its novel powder X-ray diffraction pattern, the monoclinic crystal structure was solved from a microcrystal recovered from the generally polycrystalline mixed-phase residue obtained at the end of the drying step. This is the second crystalline form of αβ-D-lactose to be identified and it has a high degree of structural three-dimensional similarity to the previously identified triclinic form.


2004 ◽  
Vol 19 (4) ◽  
pp. 982-985 ◽  
Author(s):  
Yoshikazu Suzuki ◽  
Susumu Yoshikawa

TiO2-derived nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution. High-temperature x-ray diffraction (HT-XRD) andthermogravimetry-differential thermal analysis (TG-DTA) demonstrated the formation of TiO2 (B) phase (a metastable polymorph of titanium dioxide) from the nanotubes under heating at ∼800 °C, which indicates the as-prepared nanotubes should be composed of layered titanate, most probably as H2Ti3O7·nH2O (n < 3). Dehydration behavior and phase transformation confirmed by the HT-XRD study have suggested reliable reaction path and have well-solved the contradictions on the nanotube-formation mechanism among previous studies.


2010 ◽  
Vol 6 (1) ◽  
pp. 891-896
Author(s):  
Manel Halouani ◽  
M. Dammak ◽  
N. Audebrand ◽  
L. Ktari

One nickel 1,4-cyclohexanedicarboxylate coordination polymers, Ni2 [(O10C6H4)(COO)2].2H2O  (I), was hydrothermally synthesized from an aqueous solution of Ni (NO3)2.6H2O, (1,4-CDC) (1,4-CDC = 1,4-cyclohexanedicarboxylic acid) and tetramethylammonium nitrate. Compound (I) crystallizes in the monoclinic system with the C2/m space group. The unit cell parameters are a = 20.1160 (16) Å, b = 9.9387 (10) Å, c = 6.3672 (6) Å, β = 97.007 (3) (°), V= 1263.5 (2) (Å3) and Dx= 1.751g/cm3. The refinement converged into R= 0.036 and RW = 0.092. The structure, determined by single crystal X-ray diffraction, consists of two nickel atoms Ni (1) and Ni (2). Lots of ways of which is surrounded by six oxygen atoms, a carboxyl group and two water molecules.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


1976 ◽  
Vol 31 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Karl-Heinz Tytko

Possible structures and the pertinent reaction pathways for the polymetalate ion present in a slightly soluble polymetalate having the analytical formula A2O · 2 MOs have been derived on the basis of theoretical considerations. Structure and kind of combination of the tetrameric units of one of the possibilities are in agreement with the results of X-ray structure analyses. First the previously proposed planar tetrametalate ion [M4O12(OH)4]4--is formed by stepwise aggregation according to an addition mechanism. This species undergoes a rearrangement of the coordination sphere of two of the M atoms and is then subject to a polycondensation resulting in a polytetrametalate chain, [M4O144-]n.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8619-8627
Author(s):  
I. E. Grey ◽  
P. Bordet ◽  
N. C. Wilson

Amorphous titania samples prepared by ammonia solution neutralization of titanyl sulphate have been characterized by chemical and thermal analyses, and with reciprocal-space and real-space fitting of wide-angle synchrotron X-ray scattering data.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 720
Author(s):  
Do Tra Huong ◽  
Nguyen Van Tu ◽  
Duong Thi Tu Anh ◽  
Nguyen Anh Tien ◽  
Tran Thi Kim Ngan ◽  
...  

Fe-Cu materials were synthesized using the chemical plating method from Fe powder and CuSO4 5% solution and then characterized for surface morphology, composition and structure by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The as-synthesized Fe-Cu material was used for removal of phenol from aqueous solution by internal microelectrolysis. The internal electrolysis-induced phenol decomposition was then studied with respect to various parameters such as pH, time, Fe-Cu material weight, phenol concentration and shaking speed. The optimal phenol decomposition (92.7%) was achieved under the conditions of (1) a pH value of phenol solution of 3, (2) 12 h of shaking at the speed of 200 rpm, (3) Fe-Cu material weight of 10 g/L, (4) initial phenol concentration of 100.98 mg/L and (5) at room temperature (25 ± 0.5 °C). The degradation of phenol using Fe-Cu materials obeyed the second-order apparent kinetics equation with a reaction rate constant of k of 0.009 h−1L mg−1. The optimal process was then tested against real coking wastewater samples, resulting in treated wastewater with favorable water indicators. Current findings justify the use of Fe-Cu materials in practical internal electrolysis processes.


Author(s):  
Ke Guo ◽  
Shaoyan Wang ◽  
Renfeng Song ◽  
Zhiqiang Zhang

AbstractLeaching titaniferous magnetite concentrate with alkali solution of high concentration under high temperature and high pressure was utilized to improve the grade of iron in iron concentrate and the grade of TiO2 in titanium tailings. The titaniferous magnetite concentrate in use contained 12.67% TiO2 and 54.01% Fe. The thermodynamics of the possible reactions and the kinetics of leaching process were analyzed. It was found that decomposing FeTiO3 with NaOH aqueous solution could be carried out spontaneously and the reaction rate was mainly controlled by internal diffusion. The effects of water usage, alkali concentration, reaction time, and temperature on the leaching procedure were inspected, and the products were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. After NaOH leaching and magnetic separation, the concentrate, with Fe purity of 65.98% and Fe recovery of 82.46%, and the tailings, with TiO2 purity of 32.09% and TiO2 recovery of 80.79%, were obtained, respectively.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 364-372 ◽  
Author(s):  
P. Zipper ◽  
R. Wilfing ◽  
M. Kriechbaum ◽  
H. Durchschlag

Abstract The sulfhydryl enzyme malate synthase from baker’s yeast was X-irradiated with 6 kGy in air-saturated aqueous solution (enzyme concentration: ≃ 10 mg/ml; volume: 120 μl), in the absence or presence of the specific scavengers formate, superoxide dismutase, and catalase. After X-irradiation, a small aliquot of the irradiated solutions was tested for enzymic activity while the main portion was investigated by means of small-angle X-ray scattering. Additionally, an unir­radiated sample without additives was investigated as a reference. Experiments yielded the fol­lowing results: 1. X-irradiation in the absence of the mentioned scavengers caused considerable aggregation, fragmentation, and inactivation of the enzyme. The dose Dt37 for total (= repairable + non­-repayable) inactivation resulted as 4.4 kGy. The mean radius of gyration was found to be about 13 nm. The mean degree of aggregation was obtained as 5.7, without correction for fragmenta­tion. An estimation based on the thickness factor revealed that about 19% of material might be strongly fragmented. When this amount of fragments was accordingly taken into account, a value of 7.1 was obtained as an upper limit for the mean degree of aggregation. The observed retention of the thickness factor and the finding of two different cross-section factors are in full accord with the two-dimensional aggregation model established previously (Zipper and Durchschlag, Radiat. Environ. Biophys. 18, 99 - 121 (1980)). 2. The presence of catalytic amounts of superoxide dismutase and/or catalase, in the absence of formate, during X-irradiation reduced both aggregation and inactivation significantly. 3. The presence of formate (10 or 100 mᴍ) during X-irradiation led to a strong decrease of aggregation and inactivation. This effect was more pronounced with the higher formate concen­tration or when superoxide dismutase and/or catalase were simultaneously present during X-irradiation. The presence of formate also reduced the amount of fragments significantly. 4. The results clearly show that the aggregation and inactivation of malate synthase upon X-irradiation in aqueous solution are mainly caused by OH·; to a minor extent O·̄2 and H2O2 are additionally involved in the damaging processes.


Sign in / Sign up

Export Citation Format

Share Document