scholarly journals Enhancement of the Yersinia pestis EV NIIEG Vaccine Srain Immunogenic and Protective Activity under Cultivation with Azoxymer Bromide (Polyoxidonium)

2022 ◽  
Vol 20 (6) ◽  
pp. 12-19
Author(s):  
T. N. Shchukovskaya ◽  
A. Y. Goncharova ◽  
S. A. Bugorkova ◽  
O. M. Kudryavtseva ◽  
N. E. Shcherbakova ◽  
...  

Background. The live-attenuated vaccine based on the Yersinia pestis strain EV line NIIEG is still used in Russia, providing protective efficacy against plague. Nevertheless, there is an urgent need for developing new ways to increase the immunogenicity of the Y. pestis EV NIIEG vaccine strain. In this study, the ability of direct action of immunoadjuvant azoximer bromide (polyoxidonium, PO) on the immunobiological properties of vaccine strain Y. pestis EV NIIEG during cultivation on a dense nutrient medium was evaluated. Materials & Methods. Y.pestis EV NIIEG, cultivated at 28 °С for 48 h on LB agar, Miller pH 7.2 ± 0.1 (Sigma-Aldrich, USA) with the addition of PO and without. MALDI-TOF mass-spectrometry was deployed for the obtainment of mass-spectra of ribosomal proteins from Y. pestis EV NIIEG cells on the MicroflexTM LT mass spectrometer (Bruker Daltonics, Germany). Protective efficacy was evaluated under subcutaneously challenge guinea pigs and mice BALB's with 400 LD50 doses of the Y. pestis 231, Y. pestis P-13268 Vietnam (MLD=5 CFU). Antibody titers to F1 in serum were determined using an ELISA. Results. The addition of the therapeutic concentration of PO in the cultivation medium induced a significant increase in the immunogenicity of Y. pestis EV NIIEG that resulted in enhancement of serum antibody levels against Y. pestis F1 antigen and several times the growth of protective efficacy in the bubonic plague model on two types of experimental animals. ImD50 of the vaccine strain Y. pestis EV NIIEG, cultivated with PO, was significantly (p < 0,05) lower in comparison to ImD50 for Y. pestis EV NIIEG in standard cultivation conditions. One year of storage at a temperature of 4 °С did not alter the protective properties of the vaccine strain Y. pestis EV NIIEG, cultivated with PO. Conclusions. Morphological studies confirmed the absence of influence PO introduction into the cultivation environment on the safety of the vaccine strain. MALDI-TOF MS profile of the Y. pestis EV NIIEG, cultivated with PO, had peaks characteristic features. The mass peak at m/z 3,061 was significantly down-regulated and new mass peaks at m/z 2,759, m/z 3,533 were determined. These changes are accompanied by the increase of Y. pestis EV NIIEG immunogenicity.

2021 ◽  
Vol 12 ◽  
Author(s):  
David Kornspan ◽  
Holger Brendebach ◽  
Dirk Hofreuter ◽  
Shubham Mathur ◽  
Shlomo Eduardo Blum ◽  
...  

Brucella melitensis Rev.1 is a live attenuated vaccine strain that is widely used to control brucellosis in small ruminants. For successful surveillance and control programs, rapid identification and characterization of Brucella isolates and reliable differentiation of vaccinated and naturally infected animals are essential prerequisites. Although MALDI-TOF MS is increasingly applied in clinical microbiology laboratories for the diagnosis of brucellosis, species or even strain differentiation by this method remains a challenge. To detect biomarkers, which enable to distinguish the B. melitensis Rev.1 vaccine strain from B. melitensis field isolates, we initially searched for unique marker proteins by in silico comparison of the B. melitensis Rev.1 and 16M proteomes. We found 113 protein sequences of B. melitensis 16M that revealed a homologous sequence in the B. melitensis Rev.1 annotation and 17 of these sequences yielded potential biomarker pairs. MALDI-TOF MS spectra of 18 B. melitensis Rev.1 vaccine and 183 Israeli B. melitensis field isolates were subsequently analyzed to validate the identified marker candidates. This approach detected two genus-wide unique biomarkers with properties most similar to the ribosomal proteins L24 and S12. These two proteins clearly discriminated B. melitensis Rev.1 from the closely related B. melitensis 16M and the Israeli B. melitensis field isolates. In addition, we verified their discriminatory power using a set of B. melitensis strains from various origins and of different MLVA types. Based on our results, we propose MALDI-TOF MS profiling as a rapid, cost-effective alternative to the traditional, time-consuming approach to differentiate certain B. melitensis isolates on strain level.


2014 ◽  
Vol 83 (1) ◽  
pp. 161-172 ◽  
Author(s):  
James E. Galen ◽  
Jin Yuan Wang ◽  
Jose A. Carrasco ◽  
Scott A. Lloyd ◽  
Gabriela Mellado-Sanchez ◽  
...  

Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuatedSalmonella entericaserovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen ofYersinia pestisand the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity.


Author(s):  
Qiang Gong ◽  
Zhenqi Du ◽  
Mingfu Niu ◽  
Cuili Qin

Background: Avian Pasteurella multocida is one of the pathogens that affect the health of poultry. The protective efficacy of traditional attenuated vaccine is not ideal. In previous study, we prepared ptfA gene DNA vaccine of avian P. multocida. However, the protective effect of ptfA gene DNA vaccine was inferior to the attenuated vaccine. Therefore, it is necessary to improve the immune efficacy of avian P. multocida DNA vaccine, such as screening for novel adjuvant. Methods: In this study, the peony seed proteolysis product was gavaged to chickens before DNA vaccination or was added to the ptfA gene DNA vaccine as adjuvant. These vaccines were administered to chickens and the serum antibody, lymphocyte proliferation levels, IFN-g, IL-2, IL-4 and IL-6 concentrations secreted by peripheral blood lymphocytes were determined. After challenging with virulent avian P. multocida, survival time and protective efficacy was evaluated. Result: Following vaccination, no significant differences in antibody levels and concentrations of IL-4 among the DNA vaccine group, adjuvant-DNA vaccine group and gavaged group were observed. The stimulation index (SI) values, concentrations of IFN-g, IL-2 and IL-6 in adjuvant-DNA vaccine group and gavaged group were significantly higher than those in the DNA vaccine group. The protective efficacy of live attenuated vaccine group, DNA vaccine group, adjuvant-DNA vaccine group and gavaged group were 92%, 52%, 72% and 60%, respectively. This study has laid a foundation for the design and application of future DNA vaccines of P. multocida and DNA vaccine adjuvant.


Author(s):  
Ahmed A. M. Yassein ◽  
Ayaat A. Teleb ◽  
Gamal M. Hassan ◽  
Zaki A. El Fiky

Abstract Background Pasteurella multocida is the main cause of several infections of farm animals, and the immunity gained from commercial vaccines is for the short term only and needs to be routinely administered, so work on new vaccines against virulent P. multocida is crucial. Results In this study, the OmpH gene was amplified from ten P. multocida strains, and the PCR products were sequenced and analyzed. The results of RFLP analysis of OmpH gene digested by MspI enzyme showed that all of ten strains examined possessed one restriction site and two fragments, 350 and 650 bp. The OmpH sequence of strain No. 10 was cloned into bacterial expression vector pUCP24, and the recombinant pUCP24-OmpH was expressed in E. coli DH5α. Serum samples obtained from the ELISA test from a group of vaccinated rats indicate that the antibodies were present at high titer in immunized rats and can be tested as a vaccine candidate with a challenge. Conclusions In rats infected with the DNA vaccine and inactivated vaccine, a significant increase in serum antibody levels was observed. In addition, the DNA vaccine provided the vaccinated rats with partial protection; however, the protective efficacy was greater than that offered by the live attenuated vaccine. This successful recombinant vaccine is immunogenic and may potentially be used as a vaccine in the future.


Author(s):  
E. A. Koteneva ◽  
E. S. Kotenev ◽  
A. V. Kalinin ◽  
N. S. Tsarеva ◽  
L. A. Kot ◽  
...  

Aim. To create a database of mass spectra of Yersinia pestis strains, which will differentiate the strains of the main and Caucasian subspecies of the plague agent by MALDI-TOF MS. Materials and methods. MALDITOF mass spectrometry was used to study 50 strains of Y. pestis, isolated on the territory of 7 natural plague foci of the Caucasus and Transcaucasia in the period 1950-2012. The removal of mass spectra of extracts of cells of Y. pestis was performed using the mass spectrometer Microflex LT «Bruker Daltonics». The results were processed and analyzed in FlexAnalysis programs, аnd MALDI Biotyper V. 3.0. Results. Тhis study showed that mass spectra have characteristic features that allow differentiating strains of the main (Y. pestis pestis) and subspecies (Y. pestis caucasica). Peaks characteristic of each subspecies were detected. The presence in Y. pestis caucasica subspecies peaks characteristic of the ancestral form — Y. pseudotuberculosis indicates the ancient origin of this group, which is consistent with the data of molecular genetic and WGS analysis given in other publications. Conclusion. Тhis work shows the possibility of applying the MALDI-TOF method of mass spectrometry for rapid differentiation of strains of the main subspecies Y. pestis pestis from the subspecies Y. pestis caucasica, which have different significance in the development and maintenance of the epizootic process in natural plague foci as well as different virulence for humans. Identification of the strain to the subspecies level requires carrying out culture and biochemical tests, which can take several days. The proposed method makes it possible to differentiate and obtain a result within half an hour after receiving a pure culture.


iScience ◽  
2021 ◽  
pp. 102941
Author(s):  
Jun-Guy Park ◽  
Fatai S. Oladunni ◽  
Mohammed A. Rohaim ◽  
Jayde Whittingham-Dowd ◽  
James Tollitt ◽  
...  

Talanta ◽  
2021 ◽  
pp. 122640
Author(s):  
Bin Feng ◽  
Liyuan Shi ◽  
Haipeng Zhang ◽  
Haimei Shi ◽  
Chuanfan Ding ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 376-391 ◽  
Author(s):  
Yevheniia Polishchuk ◽  
Alla Ivashchenko ◽  
Igor Britchenko ◽  
Pavel Machashchik ◽  
Serhiy Shkarlet

The focus of the research is to develop recommendations of smart specialization (SS) for Ukrainian policymakers using European approaches. The authors revealed that the main SS projects are presented in such sectors as agri-food, industrial modernization and energy. More than 12 EU countries were the plot for conducted analysis of SS, as a result of which the level of activity of each country was determined. The creation of consortiums, including SMEs, associations, universities and other participants, disclosed the successful way of SS realization. The structure of SME’s innovative potential in Ukraine was identified underlining their main characteristic features like types of innovations and innovative activity, differentiation according to enterprise size, their regional distribution. The authors explored lack of innovations on regional and national level and significant territorial disparities, which could be eliminated through policy implementation of regional SS. The existing legislative norms for possibility of SS implementation in Ukraine were analyzed due to correspondence with the EU ones. The analysis provides the opportunity to consider them only as general framework documents without any action plans and sectoral prioritization at all. The weak points of these law documents are emphasized. As a result of research, the authors developed recommendations presented by direct action plan for Ukrainian policymakers, which include such activities as underlining key priorities (especially ICT applicability in every SS project) and their correspondence with the EU ones; eliminating regional imbalances by focusing on innovation development and reorientation of some regions according to SS priorities; respecting regional existing capacities; providing organizational mechanism for cooperation of stakeholders and financial mechanism for SS support through the EU structural funds.


Sign in / Sign up

Export Citation Format

Share Document