Determining factors of the unconsolidated rocks of Cenomanian reservoir on the Bolshekhetskaya depression

2021 ◽  
pp. 57-68
Author(s):  
N. Yu. Moskalenkо

The relevance of the article is associated with the importance of the object of the research. Dozens of unique and giant oil and gas fields, such as Urengoyskoye, Medvezhye, Yamburgskoye, Vyngapurovskoye, Messoyakhskoye, Nakhodkinskoye, Russkoye, have been identified within the Cenomanian complex. The main feature of Cenomanian rocks is their slow rock cementation. This leads to significant difficulties in core sampling and the following studies of it; that is the direct and most informative source of data on the composition and properties of rocks that create a geological section.The identification of the factors, which determine the slow rock cementation of reservoir rocks, allows establishing a certain order in sampling and laboratory core studies. Consequently, reliable data on the reservoir and estimation of hydrocarbon reserves both of discovered and exploited fields and newly discovered fields that are being developed on the territory of the Gydan peninsula and the Bolshekhetskaya depression will be obtained. This study is also important for the exploration and development of hydrocarbon resources of the continental shelf in the waters of the Arctic seas of Russia as one of the most promising areas.As a result of the analysis, it was found that the formation of rocks of the PK1-3 Cenomanian age of the Bolshekhetskaya depression happened under conditions of normal compaction of terrigenous sedimentary rocks that are located in the West Siberian basin. Slow rock cementation of reservoir rocks is associated with relatively low thermobaric conditions of their occurrence, as well as the low content of clay and absence of carbonate cements. Their lithological and petrophysical characteristics are close to the analogous Cenomanian deposits of the northern fields of Western Siberia and can be applied to other unconsolidated rocks studied areas.

2021 ◽  
Vol 1201 (1) ◽  
pp. 012061
Author(s):  
Y Bogatkina ◽  
N Eremin ◽  
O Sardanashvili

Abstract The purpose of this article is to substantiate taxation models that have contributed to an increase in the efficiency of offshore oil and gas fields that are at the stage of mature development in the harsh Arctic conditions. The development of Arctic fields under the current tax regime is on the verge of profitability. As an experiment, an economic assessment of the main economic indicators of the option for the development of the Prirazlomnoye field was carried out, taking into account various tax mechanisms used to assess the effectiveness of the development of offshore oil and gas fields. The calculation results showed that the application of the tax regime in force in Russia makes the development of the Prirazlomnoye field efficient, but with a relatively low profitability for the license holder. As an alternative, the tax mechanisms laid down in the production sharing agreements in China and Russia were used, which showed a high economic effect with a low level of risk. It can be concluded that the use of taxation models, which are similar in nature to a production sharing agreement, significantly increases the efficiency of the Prirazlomnoye field development, and can bring greater financial benefits to the license holder in comparison with the current tax regime in the Russian Federation.


Author(s):  
A.D. Dzyublo ◽  
◽  
K.V. Alekseeva ◽  
V.E. Perekrestov ◽  
Hua Xiang ◽  
...  

Polar Record ◽  
2020 ◽  
Vol 56 ◽  
Author(s):  
Sohvi Kangasluoma

Abstract Despite the global alarm caused by accelerating climate change, hydrocarbon companies are exploring and opening up new oil and gas fields all over the world, including the Arctic. With increasing attention on the Arctic, companies address the growing global environmental pressure in their public marketing in various ways. This article examines the webpages of Norwegian Equinor and Russian Gazprom & Gazprom Neft. Building on feminist discussions, I analyse the different justification strategies these fossil fuel companies working in the Arctic utilise in order to support their ongoing operations. This article concludes that in order to justify their operations in the Arctic, the Norwegian and Russian companies emphasise values based on discourses that have historically and culturally been associated with masculine practices, such as the control of nature enabled by technology. These justifications are thus reinforcing the narrative of the Arctic as a territory to be conquered and mastered. Even though the companies operate in different sociopolitical contexts, the grounds of justification are rather similar. Their biggest differences occur in their visual presentations of gender, which I argue is part of the justification. Approaching the fossil fuel industry from a feminist perspective allows questioning the dominant conceptualisations, which the justifications of Arctic hydrocarbon companies are based on.


2021 ◽  
Vol 6 (3) ◽  
pp. 130-135
Author(s):  
Elena A. Poskonina ◽  
Anna N. Kurchatova

Background. Designing problems of oil fields infrastructure in the Arctic under climate change, namely, applying of temperature coefficient when calculating bearing capacity, heaving of lightly loaded foundations, optimization of thermal stabilization solutions are presented in the article. Aim. To change the strategy for designing foundations on permafrost by choosing the worst soil conditions to the implementation of an invariant matrix for designing and construction of soil bases and foundations considering specifics of industrial facilities of oil and gas fields based on unified numerical calculations (regulations). Materials and methods. An overview of the current regulatory requirements to the design of foundations on permafrost is made. The analysis of forecast modeling of the temperature of soil bases of typical industrial facilities of oil and gas fields to justify design solutions and also the use of thermal stabilization systems is done. Results. It is proposed to develop a regional directory of weather stations with long observation period based on updated climate data to decrease the volume of designing work and the amount of mistakes in applying of thermal stabilization systems. It is necessary to create regional dynamic models of permafrost geosystems, implement forecast modeling of seasonal thawing potential depth and frozen ground temperature in natural landscapes on the base of geotechnical monitoring data and select adaptation methods to existing or expecting climate change trends. Conclusions. Regulations on designing and construction of soil bases and foundations on permafrost considering specifics of industrial facilities of oil and gas fields is an effective solution. It allows moving on the strategy implementation of uniform approaches to oil fields development on permafrost: from designing for every structure on the base of typical solutions and results of engineering surveys to invariant matrix of project solutions.


Author(s):  
O.T. Gudmestad ◽  
J.E. Vindstad ◽  
H. Greiff Johnsen ◽  
A.B. Zolotukhin

Author(s):  
Chingiz Saibovich Guseinov ◽  
Dmitry Leonidovich Kulpin ◽  
Galie Hamzaevna Efimova

The article dwells upon the problem of developing offshore oil and gas fields around the world accompanied by producing not only stationary and semi-submersible rigs and drilling vessels, but also a large number of auxiliary vessels for various functional purposes. It would be impossible to extract offshore hydrocarbons under the sea bed without them. Special fleet was formed during the years of development of offshore oil and gas fields in the Russian Federation, the part of it being imported. In the upcoming years, our country will face some challenges related to the development of Arctic reservoirs which are mainly located in the long-frozen deep seas. Their development in deep water will only be possible with auxiliary fleet, as it will be necessary to build deep water drilling vessels and other facilities/vessels. The types of vessels of the modern oil and gas fleet are presented, depending on the area of navigation, the depth of use and the specifics of the work performed. It is noted that currently in world practice there are no examples of using proven drilling and production technologies in severe ice conditions, when ice thickness exceeds 2-3 m, because the modern ice-resistant stationary platforms can not withstand the load at a depth of more than 80-100 m. The auxiliary fleet will both service offshore rigs and ensure their long-term productivity and functionality. For the development of oil and gas fields in the long-frozen Arctic deep-sea areas it is necessary to create a full-fledged underwater oil and gas fleet.


Sign in / Sign up

Export Citation Format

Share Document