scholarly journals Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years

2010 ◽  
Vol 28 (1) ◽  
pp. E6 ◽  
Author(s):  
Paul A. Northcott ◽  
James T. Rutka ◽  
Michael D. Taylor

Advances in the field of genomics have recently enabled the unprecedented characterization of the cancer genome, providing novel insight into the molecular mechanisms underlying malignancies in humans. The application of high-resolution microarray platforms to the study of medulloblastoma has revealed new oncogenes and tumor suppressors and has implicated changes in DNA copy number, gene expression, and methylation state in its etiology. Additionally, the integration of medulloblastoma genomics with patient clinical data has confirmed molecular markers of prognostic significance and highlighted the potential utility of molecular disease stratification. The advent of next-generation sequencing technologies promises to greatly transform our understanding of medulloblastoma pathogenesis in the next few years, permitting comprehensive analyses of all aspects of the genome and increasing the likelihood that genomic medicine will become part of the routine diagnosis and treatment of medulloblastoma.

2016 ◽  
Vol 97 (2) ◽  
pp. 659-668 ◽  
Author(s):  
Agnieszka Piotrowska-Cyplik ◽  
Kamila Myszka ◽  
Jakub Czarny ◽  
Katarzyna Ratajczak ◽  
Ryszard Kowalski ◽  
...  

HLA ◽  
2021 ◽  
Author(s):  
Maria Loginova ◽  
Olga Makhova ◽  
Daria Smirnova ◽  
Igor Paramonov ◽  
Maksim Zarubin

HLA ◽  
2020 ◽  
Author(s):  
Steve Genebrier ◽  
Vincent Elsermans ◽  
Emeric Texeraud ◽  
Gerald Bertrand ◽  
Virginie Renac

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 437
Author(s):  
Ilaria Maria Saracino ◽  
Matteo Pavoni ◽  
Angelo Zullo ◽  
Giulia Fiorini ◽  
Tiziana Lazzarotto ◽  
...  

Background and aims: Only a few antimicrobials are effective against H. pylori, and antibiotic resistance is an increasing problem for eradication therapies. In 2017, the World Health Organization categorized clarithromycin resistant H. pylori as a “high-priority” bacterium. Standard antimicrobial susceptibility testing can be used to prescribe appropriate therapies but is currently recommended only after the second therapeutic failure. H. pylori is, in fact, a “fastidious” microorganism; culture methods are time-consuming and technically challenging. The advent of molecular biology techniques has enabled the identification of molecular mechanisms underlying the observed phenotypic resistance to antibiotics in H. pylori. The aim of this literature review is to summarize the results of original articles published in the last ten years, regarding the use of Next Generation Sequencing, in particular of the whole genome, to predict the antibiotic resistance in H. pylori.Methods: a literature research was made on PubMed. The research was focused on II and III generation sequencing of the whole H. pylori genome. Results: Next Generation Sequencing enabled the detection of novel, rare and complex resistance mechanisms. The prediction of resistance to clarithromycin, levofloxacin and amoxicillin is accurate; for other antimicrobials, such as metronidazole, rifabutin and tetracycline, potential genetic determinants of the resistant status need further investigation.


HLA ◽  
2021 ◽  
Author(s):  
Steve Genebrier ◽  
Paul Rouzaire ◽  
Emeric Texeraud ◽  
Gerald Bertrand ◽  
Virginie Renac

Sign in / Sign up

Export Citation Format

Share Document