Predicting Climate-Driven Habitat Shifting of the near Threatened Satyr Tragopan (Tragopan Satyra; Galliformes) in the Himalayas

2018 ◽  
Vol 11 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Bijoy Chhetri ◽  
Hemant K. Badola ◽  
Sudip Barat

Current rates of climatic change will affect the structure and function of community assemblages on Earth. In recent decades, advances in modelling techniques have illuminated the potential effects of various climatic scenarios on biodiversity hotspots, including community assemblages in the Himalayas. These techniques have been used to test the effects of representative concentration pathways (RCPs) AR5-2050, based on future greenhouse gas emission trajectories of climate change scenario/year combinations, on pheasants. Current bioclimatic variables, Miroc-esm, Hadgem2-AO and Gfdl-cm3, in future climate change scenario models, were used to predict the future distribution and the gain/loss of future habitat area, within the Himalayas, of the pheasant, Satyr Tragopon (Tragopan satyra). The results indicate that future climatic conditions may significantly affect the future distribution of Satyr Tragopon and the effectiveness of protective areas (PAs). Using the python based GIS toolkit, SDM projection, regions of high risk under climate change scenarios were identified. To predict the present distribution of the species, environment parameters of bioclimatic variables, red reflectance, blue reflectance, solar azimuth angle, altitude, slope, aspect, NDVI, EVI, VI, and LCLU were used. The forest cover (NDVI) and the canopy cover (EVI), and variables affecting forest structure, namely altitude, slope, solar azimuth angle and Bio7, were the primary factors dictating the present distribution of T. satyra. The predicted trend of habitat shifting of T. satyra in the Himalayas to higher altitudes and latitudes will gradually become more prominent with climate warming.

2011 ◽  
Vol 62 (9) ◽  
pp. 1043 ◽  
Author(s):  
Nick Bond ◽  
Jim Thomson ◽  
Paul Reich ◽  
Janet Stein

There are few quantitative predictions for the impacts of climate change on freshwater fish in Australia. We developed species distribution models (SDMs) linking historical fish distributions for 43 species from Victorian streams to a suite of hydro-climatic and catchment predictors, and applied these models to explore predicted range shifts under future climate-change scenarios. Here, we present summary results for the 43 species, together with a more detailed analysis for a subset of species with distinct distributions in relation to temperature and hydrology. Range shifts increased from the lower to upper climate-change scenarios, with most species predicted to undergo some degree of range shift. Changes in total occupancy ranged from –38% to +63% under the lower climate-change scenario to –47% to +182% under the upper climate-change scenario. We do, however, caution that range expansions are more putative than range contractions, because the effects of barriers, limited dispersal and potential life-history factors are likely to exclude some areas from being colonised. As well as potentially informing more mechanistic modelling approaches, quantitative predictions such as these should be seen as representing hypotheses to be tested and discussed, and should be valuable for informing long-term strategies to protect aquatic biota.


2017 ◽  
Vol 19 (3) ◽  
pp. 163 ◽  
Author(s):  
Adjie Pamungkas ◽  
Sarah Bekessy ◽  
Ruth Lane

Reducing community vulnerability to flooding is increasingly important given predicted intensive flood events in many parts of the world. We built a community vulnerability model to explore the effectiveness of a range of proactive and reactive adaptations to reduce community vulnerability to flood. The model consists of floods, victims, housings, responses, savings, expenditure and income sub models. We explore the robustness of adaptations under current conditions and under a range of future climate change scenarios. We present results of this model for a case study of Centini Village in Lamongan Municipality, Indonesia, which is highly vulnerable to the impacts of annual small-scale and infrequent extreme floods.  We compare 11 proactive adaptations using indicators of victims, damage/losses and recovery process to reflect the level of vulnerability. We find that reforestation and flood infrastructure redevelopment are the most effective proactive adaptations for minimising vulnerability to flood under current condition. Under climate change scenario, the floods are predicted to increase 17% on the average and 5% on the maximum measurements. The increasing floods result reforestation is the only effective adaptations in the future under climate change scenario.


2020 ◽  
Vol 12 (11) ◽  
pp. 4511
Author(s):  
Hsiao-Ping Wei ◽  
Yuan-Fong Su ◽  
Chao-Tzuen Cheng ◽  
Keh-Chia Yeh

With the growing concern about the failure risk of river embankments in a rapidly changing climate, this study aims to quantify the overtopping probability of river embankment in Kao-Ping River basin in southern Taiwan. A water level simulation model is calibrated and validated with historical typhoon events and the calibrated model is further used to assess overtopping risk in the future under a climate change scenario. A dynamic downscaled projection dataset, provided by Meteorological Research Institute (MRI) has been further downscaled to 5-km grids and bias-corrected with a quantile mapping method, is used to simulate the water level of Kao-Ping River in the future. Our results highlighted that the overtopping risk of Kao-Ping River increased by a factor of 5.7~8.0 by the end of the 21st century.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Byung Sik Kim ◽  
In Gi Chang ◽  
Jang Hyun Sung ◽  
Hae Jin Han

The Standardized Precipitation Evapotranspiration Index (SPEI) analysis was conducted using monthly precipitation data and temperature data on a 12.5 km × 12.5 km resolution based on a Representative Concentration Pathways (RCP) 8.5 climate change scenario, and the characteristics of drought were identified by the threshold. In addition, the changes in drought severity and intensity were projected using the threshold based on the run-length concept and frequency analysis. As a result of the analysis, the probability density function of the total drought and maximum drought intensity moved the upper tail for the upcoming years, and the average drought intensity was also projected to become stronger in the future than in the present to the right side. Through this, it could be projected that the drought scale and frequency and the drought intensity will become severer over South Korea because of future climate change.


Epidemiology ◽  
2004 ◽  
Vol 15 (4) ◽  
pp. S97
Author(s):  
Jonathan Patz ◽  
Howard Frumkin ◽  
Michell Klein ◽  
Michelle Bell ◽  
Hugh Ellis ◽  
...  

GeoHealth ◽  
2017 ◽  
Vol 1 (7) ◽  
pp. 278-296 ◽  
Author(s):  
Barbara A. Muhling ◽  
John Jacobs ◽  
Charles A. Stock ◽  
Carlos F. Gaitan ◽  
Vincent S. Saba

Sign in / Sign up

Export Citation Format

Share Document