scholarly journals Primary production and associated environmental conditions in the East Siberian Sea in autumn

2019 ◽  
Vol 487 (6) ◽  
pp. 696-700
Author(s):  
A. B. Demidov ◽  
V. I. Gagarin

Spatial variability of primary production (PP) was study on vast area of East Siberian Sea in autumn 2017. Water column PP (IPP) value was equal to 28±13 mgC m-2 day-1 on average that testify ultraoligotrophic conditions. IPP was limited by low incident and underwater photosynthetically available radiation and nitrate concentration. Ammonium concentration partly compensates lack of dissolved nitrogen.

2017 ◽  
Vol 38 (4) ◽  
pp. 423-443 ◽  
Author(s):  
Magdalena Krajewska ◽  
Małgorzata Szymczak-Żyła ◽  
Grażyna Kowalewska

AbstractPigments (chloropigments-a and carotenoids) in sediments and macroalgae samples, collected in Hornsund, in July 2015 and July 2016, were analysed (HPLC) in this work. In spite of the aerobic conditions and the periodic intensive solar irradiation in the Arctic environment, neither of which favour pigment preservation in water column and surface sediments, our results indicate that these compounds can provide information about phytoplankton composition, primary production and environmental conditions in this region. The sum of chloropigments-a, a marker of primary production, in the Hornsund sediments varied from 0.40 to 14.97 nmol/g d.w., while the sum of carotenoids ranged from 0.58 to 8.08 nmol/g d.w. Pheophorbides-a and pyropheophorbides-a made up the highest percentage in the sum of chloropigments-a in these sediments, supplying evidence for intensive zooplankton and/or zoobenthos grazing. Among the carotenoids, fucoxanthin and its derivatives (19’-hexanoyloxyfucoxanthin and 19’-hexanoyloxy-4-ketofucoxanthin) contributed the highest percentage, which points to the occurrence mainly of diatoms and/or haptophytes in the water. The pigment markers show that the input of macroalgae to the total biomass could be considerable only in the intertidal zone.


Author(s):  
Akihiro Shiomoto ◽  
Yushi Kamuro

Abstract In Saroma-ko Lagoon, where scallop aquaculture is a thriving commercial activity, monitoring primary production is essential for determining the amount of scallops that can be farmed. Using the primary production data obtained so far, we calculated Ψ, an index of water-column light utilization efficiency, and clarified its seasonal variation. Ψ tended to be lower in the spring bloom season (February–April), and higher in the late autumn to winter (October–December). Low chlorophyll-normalized production, an index of growth rate, resulted in lower values, while low daily irradiance resulted in higher values. The values of Ψ from our study had a range of 0.05–1.42 gC gChl-a−1 mol photons−1 m2 (N = 56). These values were within the previously reported range of 0.07–1.92 (gC gChl-a−1 mol photons−1 m2) for seawater and fresh water worldwide. Therefore, it is likely that Ψ varies from 0.05–2 gC gChl-a−1 mol photons−1 m2, being affected by conditions of phytoplankton growth and sunlight intensity, regardless of whether samples are collected from seawater or fresh water. Using the median Ψ value of 0.45 gC gChl-a−1 mol photons−1 m2 obtained in this study, primary production was 0.3–3.5 times the actual production at Saroma-ko Lagoon. Using this method, primary production can be easily and constantly monitored, facilitating the sustainable development of scallop aquaculture.


2021 ◽  
pp. 102655
Author(s):  
Maria Vernet ◽  
Ingrid Ellingsen ◽  
Christian Marchese ◽  
Simon Bélanger ◽  
Mattias Cape ◽  
...  

2021 ◽  
Vol 664 ◽  
pp. 59-77
Author(s):  
AB Demidov ◽  
IN Sukhanova ◽  
TA Belevich ◽  
MV Flint ◽  
VI Gagarin ◽  
...  

Climate-induced variability of phytoplankton size structure influences primary productivity, marine food web dynamics, biosedimentation and exchange of CO2 between the atmosphere and ocean. Investigation of phytoplankton size structure in the Arctic Ocean is important due to rapid changes in its ecosystems related to increasing temperature and declining sea ice cover. We estimated the contribution of surface micro-, nano- and picophytoplankton to the total carbon biomass, chlorophyll a concentration and primary production in the Kara and Laptev Seas and investigated the relationships of these phytoplankton size groups with environmental factors which determine their spatial variability. Additionally, we compared chlorophyll specific carbon fixation rate, specific growth rate and carbon to chlorophyll ratios among different phytoplankton size groups. The investigation was carried out from August to September 2018. Generally, picophytoplankton was dominant in terms of chlorophyll a and primary production in the whole study area. The spatial variability of phytoplankton size classes was influenced by river discharge and relied mainly on water temperature, salinity and dissolved silicon concentration. Microphytoplankton prevailed across the river runoff region under conditions of low salinity and relatively high water temperature, while picophytoplankton was predominant under conditions of high salinity and low water temperature. Our study is the first to characterize size-fractionated phytoplankton abundance in the Kara and Laptev Seas, and provides a baseline for future assessment of the response of Kara and Laptev Sea ecosystems to climate-induced processes using phytoplankton size structure.


2015 ◽  
Vol 12 (5) ◽  
pp. 1561-1583 ◽  
Author(s):  
M. Hagens ◽  
C. P. Slomp ◽  
F. J. R. Meysman ◽  
D. Seitaj ◽  
J. Harlay ◽  
...  

Abstract. Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light–dark incubations, in addition to sediment–water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air–sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment–water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid–base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid–base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.


2016 ◽  
Author(s):  
Jun Liu ◽  
Lex Bouwman ◽  
Jiaye Zang ◽  
Chenying Zhao ◽  
Xiaochen Liu ◽  
...  

Abstract. Silicon (Si) and carbon (C) play key roles in the river and marine biogeochemistry. The Si and C budgets for the Bohai Sea were established on the basis of measurements at a range of stations and additional data from the literature. The results show that the spatial distributions of reactive Si and organic C (OC) in the water column are largely affected by the riverine input, primary production and export to the Yellow Sea. Biogenic silica (BSi) and total OC in sediments are mainly from marine primary production. The major supply of dissolved silicate (DSi) comes from benthic diffusion, riverine input alone accounts for 17 % of reactive Si inputs to the Bohai Sea; the dominant DSi removal from the water column is diatom uptake, followed by sedimentation. Rivers contribute 47 % of exogenous OC inputs to the Bohai Sea; the dominant outputs of OC are sedimentation and export to the Yellow Sea. The net burial of BSi and OC represent 3.3 % and 1.0 % of total primary production, respectively. Primary production has increased by 10 % since 2002 as a result of increased river loads of DSi and BSi. Our findings underline the critical role of riverine Si supply in primary production in coastal marine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document