scholarly journals Pengaruh Sudut Punch dan Ketebalan Pelat terhadap Springback pada Bending V

2019 ◽  
Vol 17 (1) ◽  
pp. 57
Author(s):  
Rusdi Nur ◽  
Muhammad Arsyad Suyuti ◽  
Muh Reza B ◽  
Misbahuddin Misbahuddin

The bent plate is inseparable from the phenomenon that determines the size of the resulting bending angle. This phenomenon is called springback. Springback is a condition that occurs on a sheet plate when bending is done where after the punch load is removed the bent sheet plate has a tendency to return to its original form. Mini brake bending V tool with a hydraulic jack system produces springback of 1-5 degrees for punch angle 85 ° radius 2.5 mm and carbon steel material St 42 at thickness 3, 4 and 5 mm. Therefore, this study was conducted to find out how the influence of punch angle and plate thickness on springback. The limitation problem in this study is the thickness of the plates used 2 and 4 mm. The type of method used is bending V bottoming with a die angle of 90 °, the punch angle used is 80, 85, and 90, the punch radius used is 2, 4 and 6 mm, and the plate material used is carbon steel. The research method starts from designing die set, punch and die test aids, and making test specimens, then bending test, bending angle and springback measurements are carried out. Based on the research conducted, the greater the punch angle, the smaller springback produced and the thicker the plate, the smaller springback produced tends to be smaller, where the smallest springback is obtained on a plate thickness of 6 mm with a punch angle of 90 ° 4 mm radius obtained -0.31o.

2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Shahrul Azam Abdullah ◽  
Muhamad Sani Buang ◽  
Juri Saedon ◽  
Hashim Abdullah

Advanced High Strength Steels (AHSS) are increasingly utilized especially in automotive industry. However, forming of AHSS is challenging particularly in prediction of springback effect caused by material properties, tools and dies parameters, work material and bending technique factors. An air V-bending process was chosen as an evaluation problem because it showed larger springback effect. This paper presents an optimization to predict the influence of various parameters on springback of sheet metal in air V-bending process using Taguchi method (TM). The experimental study was conducted on DP590 sheets with plate thickness of 1 and 2 mm under different process parameters such as punch radius, die radius, die gap and punch travel. A significant level of springback parameters was further described by using the analysis of variance (ANOVA). It showed that the contribution percentage of each factor to springback was calculated to optimum level and the significant levels of entire factor were observed. The thickness of material, die width, punch travel and punch radius were found to be the most significant factor affecting springback while die radius is insignificant. 


POROS ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 111
Author(s):  
Tumpal Ojahan Ojahan ◽  
Miswanto Miswanto Miswanto ◽  
Slamtt Sumardi Sumardi

Fueled by a rise in food needs as beef and oil into basic commodities has been consumed by thepublic, has lead the increasing of waste the cows and coconut shell. The main ingredient used in thisresearch is a waste product from cow bones and from the remains of the coconut shells from which no orhousehold wastes, that can be processed into charcoal. The purpose of this research which is to enhanceeconomic value of waste from cow bones and coconut shells using combustion pyrolysis system beingcharred (fixed carbon) to produce good quality charcoal, to find out the extent of the temperature used andthe composition of charcoal. The process used in this research is pack carburizing with cow bones andcoconut shell as the media at the temperature 950oC, time detention three hours with variations compositioncharcoal. It can be concluded that charcoal bone across his cattle and charcoal coconut can be used as asource of carbon that might improve the force and hardness in the material carbon steel low (low carbonsteel). The process of pack carburizing can increase the value of % C, against low carbon steel material.


2018 ◽  
Vol 1145 ◽  
pp. 1-7
Author(s):  
Yuan Long Yang ◽  
Qing Chun Meng ◽  
Wei Ping Hu

In the paper, the relationship between the grain size and fatigue life are studied. To specify the initial and short crack propagation life of low carbon steel material, three methods are used in the simulation. At first, the K. Tanaka’s model is introduced to calculate the fatigue life of a grain. Then, the Voronoi Diagram is used to generate the microstructure of grains. At last, a criteria to specify the short crack is proposed. Based on these methods, the numerical simulation is conducted. With the help of the process, the grain sizes are generated randomly in order to specify how grain sizes effect fatigue life. The computational results are in good agreement with the experimental data. The results show that the randomness of fatigue life is closely related to the randomness of grain sizes.


2020 ◽  
Vol 977 ◽  
pp. 163-168
Author(s):  
Mohanraj Murugesan ◽  
Dong Won Jung

Isothermal tensile test of medium carbon steel material was conducted on a computer controlled servo-hydraulic testing machine at the deformation temperatures (923 to 1223 K) and the strain rates (0.05 to 1.0 s-1). Using the experimental data, the artificial neural network (ANN) model with a back-propagation (BP) algorithm was proposed to predict the hot deformation behavior of medium carbon steel material. For the model training and testing purpose, deformation temperature, strain rate and strain data were considered as inputs and in addition, the flow stress data were used a targets. Before running the neural network, the test data were normalized to effectively run the problem and after solving the problem, the obtained results were again converted in order to achieve the actual data. According to the predicted results, the coefficient of determination (R2) and the average absolute relative error between the predicted flow stress and the experimental data were determined as 0.997 and 0.913%, respectively. In addition, by evaluating each test conditions, it was found that the average absolute relative error based on an ANN model varied from 0.55% to 1.36% and moreover, the results showed the better predictability compared with the measured data. Overall, the trained BP-ANN model is found to be much more efficient and accurate by means of flow stress prediction with respect to the experimental data for an entire tested conditions.


Jurnal METTEK ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. 43
Author(s):  
Dwi Payana ◽  
I Made Widiyarta ◽  
Made Sucipta

Beban gesek pada permukaan sebuah benda dapat menimbulkan panas pada permukaan kontak benda tersebut. Semakin besar beban gesek yang terjadi, suhu pada permukaan material akan menjadi lebih tinggi. Peningkatan suhu permukaan yang semakin tinggi dapat mempengaruhi sifat mekanis permukaan material dan tentunya dapat berimplikasi terhadap mekanisme kegagalan pada permukaan material tersebut, seperti kegagalan aus dan kegagalan retak. Pada penelitian ini, uji kekerasan dilakukan pada material dengan suhu permukaan tertentu. Permukaan material baja karbon sedang dipanaskan dengan variasi suhu yaitu mulai dari suhu kamar sampai dengan 300ºC, kemudian dilakukan uji Vicker’s. Tingkat kekerasan dan profil indentasi Vickers pada permukaan material dengan variasi suhu tersebut kemudian diinvestigasi. Friction load on the surface of an object can cause heat on the contact surface of the object. The larger the frictional load occurs, the temperature on the surface of the material will become higher. Increased surface temperatures can further affect the mechanical properties of the material surface and can certainly have implications for the failure mechanisms on the surface of the material, such as wear failure and crack failure. In this study, hardness tests were performed on materials with certain surface temperature. The surface of the carbon steel material is being heated with temperature variations ranging from room temperature up to 300ºC, then Vicker's test. The degree of hardness and Vickers indent profile on the surface of the material with the temperature variation is then investigated.


2005 ◽  
Vol 2005.54 (0) ◽  
pp. 67-68
Author(s):  
Hajime YOSHIDA ◽  
Yozo SAWAKI ◽  
Yoshihisa SAKAIDA ◽  
Tadashi SUZUKI

2002 ◽  
Vol 757 ◽  
Author(s):  
Lietai Yang ◽  
Roberto T. Pabalan ◽  
Lauren Browning ◽  
Darrell S. Dunn

ABSTRACTIn-situ coupled multielectrode array sensors were used to measure the non-uniform corrosion of carbon steel and stainless steel materials under KCl salt deposit in simulated dry repository environments. It was found that the initiation of non-uniform corrosion occurs at a relative humidity that is 14% lower than the deliquescence relative humidity of the chloride salt. It was found also that once significant corrosion had occurred, the non-uniform corrosion process for the carbon steel material under the salt deposit continues at relative humidities as low as 27%.


2011 ◽  
Vol 189-193 ◽  
pp. 2638-2641
Author(s):  
Hong Qi Ni ◽  
Jin Ping Zhang ◽  
Shuqiang Wang

Super steel has the same chemical composition as plain carbon steel, but its yield strength is higher than plain carbon steel because it has finer grain size. The products of super steel sheet have been used in automobile parts, which not only improves the quality of the automobiles, but also reduces the cost and weight of automobiles, decreases energy consumption and environmental pollution. At present, several automobile manufacturers have applied the super steel products to their parts, such as Across Beam and Longitude Beam, Automotive wheel, et al. This paper introduces the tensile test, cold bending test and metallographic examination for 500MPa grade super steel sheet that have been done. The hardening index, value of plastic strain ratio, yield strength, tensile strength, even percentage elongation and other mechanical performances have been studied. The press forming performance of 500MPa grade super steel has been analyzed too. It can be used for guidance of stamping production.


2015 ◽  
Vol 72 (11) ◽  
pp. 2027-2033 ◽  
Author(s):  
Shervin Hashemi ◽  
Mooyoung Han ◽  
Tschungil Kim

One of the important challenges with current sanitation practices is pipe blockage in urinals caused by urine scale formation. Urinal material and flushing water type are the two most important factors affecting scale formation. This paper examines the scale formation process on different materials which are commonly used in urinal manufacturing and exposed to different urine-based aqua cultures. This study shows that urine scale formation is the greatest for carbon steel material, and the least for PVC. Additionally, material exposure to the urine-rainwater mixture resulted in the smallest amount of scale formation. Based on these results, two new methods for improving sanitation practices are proposed: (1) using PVC as production material for urinals and pipelines; and (2) using rainwater for flushing systems.


Sign in / Sign up

Export Citation Format

Share Document