scholarly journals Serial Interval and Transmission Dynamics during SARS-CoV-2 Delta Variant Predominance, South Korea

2022 ◽  
Vol 28 (2) ◽  
Author(s):  
Sukhyun Ryu ◽  
Dasom Kim ◽  
Jun-Sik Lim ◽  
Sheikh Taslim Ali ◽  
Benjamin J. Cowling
2021 ◽  
Author(s):  
Sukhyun Ryu ◽  
Dasom Kim ◽  
Jun-Sik Lim ◽  
Sheikh Taslim Ali ◽  
Benjamin J Cowling

We estimated the mean serial interval and superspreading potential for the Delta variant SARS-CoV-2. As the Delta variant increased in prevalence, the mean serial interval declined from 4.0 to 2.5 days. However, the risk of superspreading events was similar, as 25% to 27% of cases seeded 80% of all transmission.


2021 ◽  
Author(s):  
Hari Hwang ◽  
Jun-Sik Lim ◽  
Sun-Ah Song ◽  
Chiara Achangwa ◽  
Woobeom Sim ◽  
...  

Abstract Background The delta variant of SARS-CoV-2 is now the predominant variant worldwide. However, its transmission dynamics remain unclear. Methods We analyzed all case patients in local clusters and temporal patterns of viral shedding using contact tracing data from 405 cases associated with the delta variant of SARS-CoV-2 between 22 June and 31 July 2021 in Daejeon, South Korea. Results Overall, half of the cases were aged under 19 years, and 20% were asymptomatic at the time of epidemiological investigation. We estimated the mean serial interval as 3.26 days (95% credible interval 2.92, 3.60), and 12% of the transmission occurred before symptom onset of the infector. We identified six clustered outbreaks, and all were associated with indoor facilities. In 23 household contacts, the secondary attack rate was 63% (52/82). We estimated that 15% (95% confidence interval, 13–18%) of cases seeded 80% of all local transmission. Analysis of the nasopharyngeal swab samples identified virus shedding from asymptomatic patients, and the highest viral load was observed two days after symptom onset. The temporal pattern of viral shedding did not differ between children and adults (P = 0.48). Conclusions Our findings suggest that the delta variant is highly transmissible in indoor settings and households. Rapid contact tracing, isolation of the asymptomatic contacts, and strict adherence to public health measures are needed to mitigate the community transmission of the delta variant.


2020 ◽  
Author(s):  
Khouloud Talmoudi ◽  
Mouna Safer ◽  
Hejer Letaief ◽  
Aicha Hchaichi ◽  
Chahida Harizi ◽  
...  

Abstract Background Describing transmission dynamics of the outbreak and impact of intervention measures are critical to planning responses to future outbreaks and providing timely information to guide policy makers decision. We estimate serial interval (SI) and temporal reproduction number (Rt) of SARS-CoV-2 in Tunisia. Methods We collected data of investigations and contact tracing between March 1, 2020 and May 5, 2020 as well as illness onset data during the period February 29-May 5, 2020 from National Observatory of New and Emerging Diseases of Tunisia. Maximum likelihood (ML) approach is used to estimate dynamics of Rt. Results 491 of infector-infectee pairs were involved, with 14.46% reported pre-symptomatic transmission. SI follows Gamma distribution with mean 5.30 days [95% CI 4.66–5.95] and standard deviation 0.26 [95% CI 0.23–0.30]. Also, we estimated large changes in Rt in response to the combined lockdown interventions. The Rt moves from 3.18 [95% CI 2.73–3.69] to 1.77 [95% CI 1.49–2.08] with curfew prevention measure, and under the epidemic threshold (0.89 [95% CI 0.84–0.94]) by national lockdown measure. Conclusions Overall, our findings highlight contribution of interventions to interrupt transmission of SARS-CoV-2 in Tunisia.


2021 ◽  
Author(s):  
Brandon Pae

In the span of 1.5 years, COVID-19 has caused more than 4 million deaths worldwide. To prevent such a catastrophe from reoccurring, it is necessary to test and refine current epidemiological models that impact policy decisions. Thus, we developed a deterministic SIR model to examine the long-term transmission dynamics of COVID-19 in South Korea. Using this model, we analyzed how vaccines would affect the number of cases. We found that a 70% vaccination coverage with a 100% effective vaccine would effectively eliminate the number of cases and herd immunity would have been obtained approximately 85 days after February 15 had there not been a reintroduction of cases.


2020 ◽  
Vol 5 ◽  
pp. 91
Author(s):  
Yung-Wai Desmond Chan ◽  
Stefan Flasche ◽  
Tin-Long Terence Lam ◽  
Mei-Hung Joanna Leung ◽  
Miu-Ling Wong ◽  
...  

Background: The outbreak of coronavirus disease 2019 (COVID-19) started in Wuhan, China in late December 2019, and subsequently became a pandemic. Hong Kong had implemented a series of control measures since January 2020, including enhanced surveillance, isolation and quarantine, border control and social distancing. Hong Kong recorded its first case on 23 January 2020, who was a visitor from Wuhan. We analysed the surveillance data of COVID-19 to understand the transmission dynamics and epidemiology in Hong Kong. Methods: We constructed the epidemic curve of daily COVID-19 incidence from 23 January to 6 April 2020 and estimated the time-varying reproduction number (Rt) with the R package EpiEstim, with serial interval computed from local data. We described the demographic and epidemiological characteristics of reported cases. We computed weekly incidence by age and residential district to understand the spatial and temporal transmission of the disease. Results: COVID-19 disease in Hong Kong was characterised with local cases and clusters detected after two waves of importations, first in late January (week 4 to 6) and the second one in early March (week 9 to 10). The Rt increased to approximately 2 95% credible interval (CI): 0.3-3.3) and approximately 1 (95%CI: 0.2-1.7), respectively, following these importations; it decreased to below 1 afterwards from weeks 11 to 13, which coincided with the implementation, modification and intensification of different control measures. Compared to local cases, imported cases were younger (mean age: 52 years among local cases vs 35 years among imported cases), had a lower proportion of underlying disease (9% vs 5%) and severe outcome (13% vs 5%). Cases were recorded in all districts but the incidence was highest in those in the Hong Kong Island region. Conclusions: Stringent and sustained public health measures at population level could contain the COVID-19 disease at a relatively low level.


Author(s):  
Sofia K. Mettler ◽  
Marloes H. Maathuis

BACKGROUNDThe clinical onset serial interval, or the time between the onset of symptoms in successive cases in a chain of infection, is often used as a measurable proxy for the transmission serial interval of an infectious disease. Current estimates of the mean clinical onset serial interval of COVID-19 range from 3.96 to 7.5 days. In this article, we define the diagnostic serial interval as the time between the diagnosis dates of the infector and infectee. We study and compare the clinical onset and diagnostic serial intervals of SARS-CoV-2/COVID-19 in South Korea.METHODSAnalyzing the DS4C project data which summarize information on SARS-CoV-2/COVID-19 cases reported by regional governments in South Korea, we estimate the means of the clinical onset serial interval, the diagnostic serial interval and the difference between the two. We use the balanced cluster bootstrap method to construct 95% bootstrap confidence intervals.RESULTSThe mean clinical onset serial interval and mean diagnostic serial interval were estimated to be 3.58 days (95% CI: 2.62, 4.53) and 3.68 days (95% CI: 3.14, 4.22), respectively. A matched sample analysis showed that the diagnostic serial interval was significantly shorter than the clinical onset serial interval (estimated mean difference −1.17 days, 95% CI: −2.26, −0.09).CONCLUSIONSThe short diagnostic serial interval of SARS-CoV-2/COVID-19 in South Korea may explain why South Korea was able to contain the COVID-19 outbreak and avoid high mortality. We conjecture that the mean diagnostic serial interval may serve as a predictor for the success of a country’s containment efforts.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Khouloud Talmoudi ◽  
Mouna Safer ◽  
Hejer Letaief ◽  
Aicha Hchaichi ◽  
Chahida Harizi ◽  
...  

Abstract Background Describing transmission dynamics of the outbreak and impact of intervention measures are critical to planning responses to future outbreaks and providing timely information to guide policy makers decision. We estimate serial interval (SI) and temporal reproduction number (Rt) of SARS-CoV-2 in Tunisia. Methods We collected data of investigations and contact tracing between March 1, 2020 and May 5, 2020 as well as illness onset data during the period February 29–May 5, 2020 from National Observatory of New and Emerging Diseases of Tunisia. Maximum likelihood (ML) approach is used to estimate dynamics of Rt. Results Four hundred ninety-one of infector-infectee pairs were involved, with 14.46% reported pre-symptomatic transmission. SI follows Gamma distribution with mean 5.30 days [95% Confidence Interval (CI) 4.66–5.95] and standard deviation 0.26 [95% CI 0.23–0.30]. Also, we estimated large changes in Rt in response to the combined lockdown interventions. The Rt moves from 3.18 [95% Credible Interval (CrI) 2.73–3.69] to 1.77 [95% CrI 1.49–2.08] with curfew prevention measure, and under the epidemic threshold (0.89 [95% CrI 0.84–0.94]) by national lockdown measure. Conclusions Overall, our findings highlight contribution of interventions to interrupt transmission of SARS-CoV-2 in Tunisia.


2021 ◽  
Author(s):  
Dasom Kim ◽  
Jisoo Jo ◽  
Jun-Sik Lim ◽  
Sukhyun Ryu

South Korea is experiencing the community transmission of the SARS-CoV-2 Omicron variant (B.1.1.529). We estimated that the mean of the serial interval was 2.22 days, and the basic reproduction number was 1.90 (95% Credible Interval, 1.50-2.43) for the Omicron variant outbreak in South Korea.


Author(s):  
Sukhyun Ryu ◽  
Sheikh Taslim Ali ◽  
Cheolsun Jang ◽  
Baekjin Kim ◽  
Benjamin J. Cowling

AbstractWe analyzed transmission of coronavirus disease 2019 in South Korea. We estimated that non-pharamaceutical measures reduced the immediate transmissibility by maximum of 34% for coronavirus disease 2019. Continuous efforts are needed for monitoring the transmissibility to optimize epidemic control.


Sign in / Sign up

Export Citation Format

Share Document