scholarly journals Seismic Pore Water Pressure Analysis Confronted with Field Measurements in Fine Sand

1983 ◽  
Vol 23 (4) ◽  
pp. 119-126 ◽  
Author(s):  
Leonardo Zeevaert
2003 ◽  
Vol 40 (5) ◽  
pp. 1012-1032 ◽  
Author(s):  
Illias Tsaparas ◽  
Harianto Rahardjo ◽  
David G Toll ◽  
Eng-Choon Leong

This paper presents the analysis of a 12 month long field study of the infiltration characteristics of two residual soil slopes in Singapore. The field measurements consist of rainfall data, runoff data of natural and simulated rainfall events, and pore-water pressure changes during infiltration at several depths and at several locations on the two slopes. The analysis of the field measurements identifies the total rainfall and the initial pore-water pressures within the two slopes as the controlling parameters for the changes in the pore-water pressures within the slopes during infiltration.Key words: infiltration, rainfall, runoff, pore-water pressure, field measurements.


1992 ◽  
Vol 29 (1) ◽  
pp. 112-116
Author(s):  
K. D. Eigenbrod ◽  
J. P. Burak

Anchor forces, ground temperatures, and piezometric pressures were measured at a retaining wall in northwestern Ontario over a period of 2 years. The anchor forces were measured with strain gauges attached in pairs directly to the anchor rods. This method appeared practical in the field for time periods of less than 2 years as long as the strain gauges were carefully protected against moisture. The anchor forces increased from an average of 5 kN initially up to values of 50 kN during the winter periods and dropped during the summer periods back to the same values measured initially. The anchor forces were largely independent of pore-water pressure variations behind the wall. Rapid drawdown conditions, however, which were experienced during the second summer, were reflected in a load increase that was equivalent to the associated unloading effect in front of the wall. The pore-water pressures behind the wall were not noticeably affected by rapid drawdown, possibly due to the restraining effect of the anchors and the high rigidity of the low sheet pile wall. Ground temperatures at or below the groundwater table never dropped below 0 °C thus restricting the depth of frost penetration. Key words : anchor loads, freezing pressure, retaining walls, pore-water pressures, ground temperatures, field measurements.


2004 ◽  
Vol 41 (4) ◽  
pp. 629-643 ◽  
Author(s):  
Hong Yang ◽  
H Rahardjo ◽  
E C Leong ◽  
D G Fredlund

The capillary barrier effect was investigated by conducting infiltration tests on three soil columns of fine sand over medium sand, medium sand over gravelly sand, and fine sand over gravelly sand. The barrier effect was verified in the underlying layer of coarser material, and the water-entry values of the coarser layers were confirmed to be nearly equal to the residual matric suctions of the soils. The coarser layer of gravelly sand, which had a lower water-entry value, was more effective in forming a barrier than the coarser layer of medium sand, which had a higher water-entry value. When the capillary barrier was comprised of a coarser layer of gravelly sand, there was more water stored in the finer layer at the end of the drying stage than when the capillary barrier was comprised of a coarser layer of medium sand. Non-equilibrium static conditions of pore-water pressure profiles were observed in the three soil columns, and a generalized ultimate pore-water pressure profile of a capillary barrier system was proposed. In addition, the final volumetric water contents versus matric suctions of the soils as measured from the soil columns were reasonably consistent with the soil-water characteristic curves (SWCCs) of the soils, suggesting that the drying SWCC of a soil could also be obtained from the drying process in a soil column (or a capillary open tube). The drying SWCC could be established from measurements in the soil column up to a height corresponding to two times the residual matric suction head of the soil.Key words: capillary barrier, soil column, soil-water characteristic curve, pore-water pressure, water content, matric suction.


1978 ◽  
Vol 87 (1) ◽  
pp. 193-206 ◽  
Author(s):  
Tokuo Yamamoto ◽  
H. L. Koning ◽  
Hans Sellmeijer ◽  
Ep Van Hijum

The problem of the response of a porous elastic bed to water waves is treated analytically on the basis of the three-dimensional consolidation theory of Biot (1941). Exact solutions for the pore-water pressure and the displacements of the porous medium are obtained in closed form for the case of waves propagating over the poro-elastic bed. The theoretical results indicate that the bed response to waves is strongly dependent on the permeabilitykand the stiffness ratioG/K’, whereGis the shear modulus of the porous medium andK’is the apparent bulk modulus of elasticity of the pore fluid. The earlier solutions for pore-water pressure by various authors are given as the limiting cases of the present solution. For the limitsG/K′→ 0 ork→ ∞, the present solution for pressure approaches the solution of the Laplace equation by Putnam (1949). For the limitG/K′→ ∞, the present solution approaches the solution of the heat conduction equation by Nakamuraet al.(1973) and Moshagen & Tørum (1975).The theoretical results are compared with wave tank experimental data on pore-water pressure in coarse and fine sand beds which contain small amounts of air. Good agreement between theory and experiment is obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yu Liang ◽  
Yufei Xiao ◽  
Yuexiang Lin

When shield tunnelling is in a water-rich sand stratum with poor bearing capacity, instability is easily generated, and even ground collapses may occur. The variation of pore water pressure in a water-rich sand stratum during shield tunnelling was analyzed based on a large-scale cross-river shield tunnel in China, which was also investigated by a three-dimensional fluid-solid coupling finite element model. The results show that the influence range of the pore water pressure in front of the excavation face is approximately 2.0 times the excavation diameter and 1.5 times on both sides of the shield. The tunnelling steps would cause obvious variation in the pore water pressure and lead to great disturbance to the surrounding fine sand stratum. The quality of filter cake and the set of support pressure imposes an important impact on the nonlinear variation in the pore pressure, which could cause great disturbance to the stratum. To ensure the safety of the subsequent tunnelling in the fine sand layer, effective treatment should be taken.


Sign in / Sign up

Export Citation Format

Share Document