scholarly journals Conformance Checking Techniques of Process Mining: A Survey

2021 ◽  
Author(s):  
Ashok Kumar Saini ◽  
Ruchi Kamra ◽  
Utpal Shrivastava

Conformance Checking (CC) techniques enable us to gives the deviation between modelled behavior and actual execution behavior. The majority of organizations have Process-Aware Information Systems for recording the insights of the system. They have the process model to show how the process will be executed. The key intention of Process Mining is to extracting facts from the event log and used them for analysis, ratification, improvement, and redesigning of a process. Researchers have proposed various CC techniques for specific applications and process models. This paper has a detailed study of key concepts and contributions of Process Mining. It also helps in achieving business goals. The current challenges and opportunities in Process Mining are also discussed. The survey is based on CC techniques proposed by researchers with key objectives like quality parameters, perspective, algorithm types, tools, and achievements.

2020 ◽  
Vol 10 (4) ◽  
pp. 1493 ◽  
Author(s):  
Kwanghoon Pio Kim

In this paper, we propose an integrated approach for seamlessly and effectively providing the mining and the analyzing functionalities to redesigning work for very large-scale and massively parallel process models that are discovered from their enactment event logs. The integrated approach especially aims at analyzing not only their structural complexity and correctness but also their animation-based behavioral properness, and becomes concretized to a sophisticated analyzer. The core function of the analyzer is to discover a very large-scale and massively parallel process model from a process log dataset and to validate the structural complexity and the syntactical and behavioral properness of the discovered process model. Finally, this paper writes up the detailed description of the system architecture with its functional integration of process mining and process analyzing. More precisely, we excogitate a series of functional algorithms for extracting the structural constructs and for visualizing the behavioral properness of those discovered very large-scale and massively parallel process models. As experimental validation, we apply the proposed approach and analyzer to a couple of process enactment event log datasets available on the website of the 4TU.Centre for Research Data.


Author(s):  
Kwanghoon Kim

Process (or business process) management systems fulfill defining, executing, monitoring and managing process models deployed on process-aware enterprises. Accordingly, the functional formation of the systems is made up of three subsystems such as modeling subsystem, enacting subsystem and mining subsystem. In recent times, the mining subsystem has been becoming an essential subsystem. Many enterprises have successfully completed the introduction and application of the process automation technology through the modeling subsystem and the enacting subsystem. According as the time has come to the phase of redesigning and reengineering the deployed process models, from now on it is important for the mining subsystem to cooperate with the analyzing subsystem; the essential cooperation capability is to provide seamless integrations between the designing works with the modeling subsystem and the redesigning work with the mining subsystem. In other words, we need to seamlessly integrate the discovery functionality of the mining subsystem and the analyzing functionality of the modeling subsystem. This integrated approach might be suitable very well when those deployed process models discovered by the mining subsystem are complex and very large-scaled, in particular. In this paper, we propose an integrated approach for seamlessly as well as effectively providing the mining and the analyzing functionalities to the redesigning work on very large-scale and massively parallel process models that are discovered from their enactment event logs. The integrated approach especially aims at analyzing not only their structural complexity and correctness but also their animation-based behavioral properness, and becomes concretized to a sophisticated analyzer. The core function of the analyzer is to discover a very large-scale and massively parallel process model from a process log dataset and to validate the structural complexity and the syntactical and behavioral properness of the discovered process model. Finally, this paper writes up the detailed description of the system architecture with its functional integration of process mining and process analyzing. And more precisely, we excogitate a series of functional algorithms for extracting the structural constructs as well as for visualizing the behavioral properness on those discovered very large-scale and massively parallel process models. As experimental validation, we apply the proposed approach and analyzer to a couple of process enactment event log datasets available on the website of the 4TU.Centre for Research Data.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Li-li Wang ◽  
Xian-wen Fang ◽  
Esther Asare ◽  
Fang Huan

Infrequent behaviors of business process refer to behaviors that occur in very exceptional cases, and their occurrence frequency is low as their required conditions are rarely fulfilled. Hence, a strong coupling relationship between infrequent behavior and data flow exists. Furthermore, some infrequent behaviors may reveal very important information about the process. Thus, not all infrequent behaviors should be disregarded as noise, and identifying infrequent but correct behaviors in the event log is vital to process mining from the perspective of data flow. Existing process mining approaches construct a process model from frequent behaviors in the event log, mostly concentrating on control flow only, without considering infrequent behavior and data flow information. In this paper, we focus on data flow to extract infrequent but correct behaviors from logs. For an infrequent trace, frequent patterns and interactive behavior profiles are combined to find out which part of the behavior in the trace occurs in low frequency. And, conditional dependency probability is used to analyze the influence strength of the data flow information on infrequent behavior. An approach for identifying effective infrequent behaviors based on the frequent pattern under data awareness is proposed correspondingly. Subsequently, an optimization approach for mining of process models with infrequent behaviors integrating data flow and control flow is also presented. The experiments on synthetic and real-life event logs show that the proposed approach can distinguish effective infrequent behaviors from noise compared with others. The proposed approaches greatly improve the fitness of the mined process model without significantly decreasing its precision.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6630
Author(s):  
Marcin Szpyrka ◽  
Edyta Brzychczy ◽  
Aneta Napieraj ◽  
Jacek Korski ◽  
Grzegorz J. Nalepa

Conformance checking is a process mining technique that compares a process model with an event log of the same process to check whether the current execution stored in the log conforms to the model and vice versa. This paper deals with the conformance checking of a longwall shearer process. The approach uses place-transition Petri nets with inhibitor arcs for modeling purposes. We use event log files collected from a few coal mines located in Poland by Famur S.A., one of the global suppliers of coal mining machines. One of the main advantages of the approach is the possibility for both offline and online analysis of the log data. The paper presents a detailed description of the longwall process, an original formal model we developed, selected elements of the approach’s implementation and the results of experiments.


Author(s):  
Bambang Jokonowo ◽  
Nenden Siti Fatonah ◽  
Emelia Akashah Patah Akhir

Background: Standard operating procedure (SOP) is a series of business activities to achieve organisational goals, with each activity carried to be recorded and stored in the information system together with its location (e.g., SCM, ERP, LMS, CRM). The activity is known as event data and is stored in a database known as an event log.Objective: Based on the event log, we can calculate the fitness to determine whether the business process SOP is following the actual business process.Methods: This study obtains the event log from a terminal operating system (TOS), which records the dwelling time at the container port. The conformance checking using token-based replay method calculates fitness by comparing the event log with the process model.Results: The findings using the Alpha algorithm resulted in the most traversed traces (a, b, n, o, p). The fitness calculation returns 1.0 were produced, missing, and remaining tokens are replied to each of the other traces.Conclusion: Thus, if the process mining produces a fitness of more than 0.80, this shows that the process model is following the actual business process. Keywords: Conformance Checking, Dwelling time, Event log, Fitness, Process Discovery, Process Mining


2021 ◽  
Vol 11 (22) ◽  
pp. 10556
Author(s):  
Heidy M. Marin-Castro ◽  
Edgar Tello-Leal

Process Mining allows organizations to obtain actual business process models from event logs (discovery), to compare the event log or the resulting process model in the discovery task with the existing reference model of the same process (conformance), and to detect issues in the executed process to improve (enhancement). An essential element in the three tasks of process mining (discovery, conformance, and enhancement) is data cleaning, used to reduce the complexity inherent to real-world event data, to be easily interpreted, manipulated, and processed in process mining tasks. Thus, new techniques and algorithms for event data preprocessing have been of interest in the research community in business process. In this paper, we conduct a systematic literature review and provide, for the first time, a survey of relevant approaches of event data preprocessing for business process mining tasks. The aim of this work is to construct a categorization of techniques or methods related to event data preprocessing and to identify relevant challenges around these techniques. We present a quantitative and qualitative analysis of the most popular techniques for event log preprocessing. We also study and present findings about how a preprocessing technique can improve a process mining task. We also discuss the emerging future challenges in the domain of data preprocessing, in the context of process mining. The results of this study reveal that the preprocessing techniques in process mining have demonstrated a high impact on the performance of the process mining tasks. The data cleaning requirements are dependent on the characteristics of the event logs (voluminous, a high variability in the set of traces size, changes in the duration of the activities. In this scenario, most of the surveyed works use more than a single preprocessing technique to improve the quality of the event log. Trace-clustering and trace/event level filtering resulted in being the most commonly used preprocessing techniques due to easy of implementation, and they adequately manage noise and incompleteness in the event logs.


2017 ◽  
Vol 01 (01) ◽  
pp. 1630004 ◽  
Author(s):  
Asef Pourmasoumi ◽  
Ebrahim Bagheri

One of the most valuable assets of an organization is its organizational data. The analysis and mining of this potential hidden treasure can lead to much added-value for the organization. Process mining is an emerging area that can be useful in helping organizations understand the status quo, check for compliance and plan for improving their processes. The aim of process mining is to extract knowledge from event logs of today’s organizational information systems. Process mining includes three main types: discovering process models from event logs, conformance checking and organizational mining. In this paper, we briefly introduce process mining and review some of its most important techniques. Also, we investigate some of the applications of process mining in industry and present some of the most important challenges that are faced in this area.


2021 ◽  
Vol 4 ◽  
Author(s):  
Rashid Zaman ◽  
Marwan Hassani ◽  
Boudewijn F. Van Dongen

In the context of process mining, event logs consist of process instances called cases. Conformance checking is a process mining task that inspects whether a log file is conformant with an existing process model. This inspection is additionally quantifying the conformance in an explainable manner. Online conformance checking processes streaming event logs by having precise insights into the running cases and timely mitigating non-conformance, if any. State-of-the-art online conformance checking approaches bound the memory by either delimiting storage of the events per case or limiting the number of cases to a specific window width. The former technique still requires unbounded memory as the number of cases to store is unlimited, while the latter technique forgets running, not yet concluded, cases to conform to the limited window width. Consequently, the processing system may later encounter events that represent some intermediate activity as per the process model and for which the relevant case has been forgotten, to be referred to as orphan events. The naïve approach to cope with an orphan event is to either neglect its relevant case for conformance checking or treat it as an altogether new case. However, this might result in misleading process insights, for instance, overestimated non-conformance. In order to bound memory yet effectively incorporate the orphan events into processing, we propose an imputation of missing-prefix approach for such orphan events. Our approach utilizes the existing process model for imputing the missing prefix. Furthermore, we leverage the case storage management to increase the accuracy of the prefix prediction. We propose a systematic forgetting mechanism that distinguishes and forgets the cases that can be reliably regenerated as prefix upon receipt of their future orphan event. We evaluate the efficacy of our proposed approach through multiple experiments with synthetic and three real event logs while simulating a streaming setting. Our approach achieves considerably higher realistic conformance statistics than the state of the art while requiring the same storage.


Author(s):  
Bruna Brandão ◽  
Flávia Santoro ◽  
Leonardo Azevedo

In business process models, elements can be scattered (repeated) within different processes, making it difficult to handle changes, analyze process for improvements, or check crosscutting impacts. These scattered elements are named as Aspects. Similar to the aspect-oriented paradigm in programming languages, in BPM, aspect handling has the goal to modularize the crosscutting concerns spread across the models. This process modularization facilitates the management of the process (reuse, maintenance and understanding). The current approaches for aspect identification are made manually; thus, resulting in the problem of subjectivity and lack of systematization. This paper proposes a method to automatically identify aspects in business process from its event logs. The method is based on mining techniques and it aims to solve the problem of the subjectivity identification made by specialists. The initial results from a preliminary evaluation showed evidences that the method identified correctly the aspects present in the process model.


2021 ◽  
Vol 10 (9) ◽  
pp. 144-147
Author(s):  
Huiling LI ◽  
Xuan SU ◽  
Shuaipeng ZHANG

Massive amounts of business process event logs are collected and stored by modern information systems. Model discovery aims to discover a process model from such event logs, however, most of the existing approaches still suffer from low efficiency when facing large-scale event logs. Event log sampling techniques provide an effective scheme to improve the efficiency of process discovery, but the existing techniques still cannot guarantee the quality of model mining. Therefore, a sampling approach based on set coverage algorithm named set coverage sampling approach is proposed. The proposed sampling approach has been implemented in the open-source process mining toolkit ProM. Furthermore, experiments using a real event log data set from conformance checking and time performance analysis show that the proposed event log sampling approach can greatly improve the efficiency of log sampling on the premise of ensuring the quality of model mining.


Sign in / Sign up

Export Citation Format

Share Document