On the existence and stability of a nonlinear wave system with variable exponents

2021 ◽  
pp. 1-28
Author(s):  
Salim A. Messaoudi ◽  
Ala A. Talahmeh ◽  
Mohammad M. Al-Gharabli ◽  
Mohamed Alahyane

Problems with variable exponents have attracted a great deal of attention lately and various existence, nonexistence and stability results have been established. The importance of such problems has manifested due to the recent advancement of science and technology and to the wide application in areas such as electrorheological fluids (smart fluids) which have the property that the viscosity changes drastically when exposed to heat or electrical fields. To tackle and understand these models, new sophisticated mathematical functional spaces have been introduced, such as the Lebesgue and Sobolev spaces with variable exponents. In this work, we are concerned with a system of wave equations with variable-exponent nonlinearities. This system can be regarded as a model for interaction between two fields describing the motion of two “smart” materials. We, first, establish the existence of global solutions then show that solutions of enough regularities stabilize to the rest state ( 0 , 0 ) either exponentially or polynomially depending on the range of the variable exponents. We also present some numerical tests to illustrate our theoretical findings.

2021 ◽  
Vol 18 (6) ◽  
pp. 9430-9473
Author(s):  
A. M. Elaiw ◽  
◽  
N. H. AlShamrani ◽  
◽  

<abstract><p>In the literature, several HTLV-I and HIV single infections models with spatial dependence have been developed and analyzed. However, modeling HTLV/HIV dual infection with diffusion has not been studied. In this work we derive and investigate a PDE model that describes the dynamics of HTLV/HIV dual infection taking into account the mobility of viruses and cells. The model includes the effect of Cytotoxic T lymphocytes (CTLs) immunity. Although HTLV-I and HIV primarily target the same host, CD$ 4^{+} $T cells, via infected-to-cell (ITC) contact, however the HIV can also be transmitted through free-to-cell (FTC) contact. Moreover, HTLV-I has a vertical transmission through mitosis of active HTLV-infected cells. The well-posedness of solutions, including the existence of global solutions and the boundedness, is justified. We derive eight threshold parameters which govern the existence and stability of the eight steady states of the model. We study the global stability of all steady states based on the construction of suitable Lyapunov functions and usage of Lyapunov-LaSalle asymptotic stability theorem. Lastly, numerical simulations are carried out in order to verify the validity of our theoretical results.</p></abstract>


Author(s):  
Mohamed Houas ◽  
Mohamed Bezziou

In this paper, we discuss the existence, uniqueness and stability of solutions for a nonlocal boundary value problem of nonlinear fractional differential equations with two Caputo fractional derivatives. By applying the contraction mapping and O’Regan fixed point theorem, the existence results are obtained. We also derive the Ulam-Hyers stability of solutions. Finally, some examples are given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document