Development and validation of stemness associated LncRNA based prognostic model for lung adenocarcinoma patients

2021 ◽  
pp. 1-11
Author(s):  
Annesha Chatterjee ◽  
Seema Khadirnaikar ◽  
Sudhanshu Shukla

BACKGROUND: An increasing number of studies are indicating that the stemness phenotype is a critical determinant of the Lung adenocarcinoma (LUAD) patient’s response. Thus, it is crucial to identify novel biomarkers for stemness determination. OBJECTIVE: Here, we aim to develop a robust LncRNAs based prognostic signature with a stemness association for the LUAD patients. METHODS: RNA-seq and clinical data were downloaded from the existing database. The data were analysed using Cox regression, KM-plot, GSEA, and T-test. RESULTS: Initially, we used the TCGA dataset to characterize the stemness phenotype in LUAD. The commonly expressed LncRNAs in TCGA and MCTP cohort were then used as input for the Cox-regression analysis. The top three LncRNAs were selected to build a prognostic model, which was the best prognosticator in multivariate analysis with stage and previously published prognosticators. The characterization of poor surviving patients using various analysis showed high stemness properties and low expression of differentiation markers. Furthermore, we validated the prognostic score in an independent MCTP cohort of patients. In the MCTP cohort, prognostic score significantly predicted survival independent of stage and previous prognosticators. CONCLUSION: Taken together, in this study, we have developed and validated a new prognostic score associated with the stemness phenotype.

Author(s):  
Yongmei Wang ◽  
Guimin Zhang ◽  
Ruixian Wang

Background: This study aims to explore the prognostic values of CT83 and CT83-related genes in lung adenocarcinoma (LUAD). Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients. Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83-related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the Risk Score, which was also differentially expressed between the LUAD samples with high and low-Risk Scores, suggesting that the poor prognosis of LUAD patients with high-Risk Score might be due to the immunosuppressive microenvironments. Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Shigehisa Kubota ◽  
Tetsuya Yoshida ◽  
Susumu Kageyama ◽  
Takahiro Isono ◽  
Takeshi Yuasa ◽  
...  

Abstract Background Accurate prediction of the prognosis of RCC using a single biomarker is challenging due to the genetic heterogeneity of the disease. However, it is essential to develop an accurate system to allow better patient selection for optimal treatment strategies. ARL4C, ECT2, SOD2, and STEAP3 are novel molecular biomarkers identified in earlier studies as survival-related genes by comprehensive analyses of 43 primary RCC tissues and RCC cell lines. Methods To develop a prognostic model based on these multiple biomarkers, the expression of four biomarkers ARL4C, ECT2, SOD2, and STEAP3 in primary RCC tissue were semi-quantitatively investigated by immunohistochemical analysis in an independent cohort of 97 patients who underwent nephrectomy, and the clinical significance of these biomarkers were analyzed by survival analysis using Kaplan-Meier curves. The prognostic model was constructed by calculation of the contribution score to prognosis of each biomarker on Cox regression analysis, and its prognostic performance was validated. Results Patients whose tumors had high expression of the individual biomarkers had shorter cancer-specific survival (CSS) from the time of primary nephrectomy. The prognostic model based on four biomarkers segregated the patients into a high- and low-risk scored group according to defined cut-off value. This approach was more robust in predicting CSS compared to each single biomarker alone in the total of 97 patients with RCC. Especially in the 36 metastatic RCC patients, our prognostic model could more accurately predict early events within 2 years of diagnosis of metastasis. In addition, high risk-scored patients with particular strong SOD2 expression had a much worse prognosis in 25 patients with metastatic RCC who were treated with molecular targeting agents. Conclusions Our findings indicate that a prognostic model based on four novel biomarkers provides valuable data for prediction of clinical prognosis and useful information for considering the follow-up conditions and therapeutic strategies for patients with primary and metastatic RCC.


2021 ◽  
Author(s):  
Boxuan Liu ◽  
Yun Zhao ◽  
Shuanying Yang

Abstract Background: Lung adenocarcinoma is the most occurred pathological type among non-small cell lung cancer. Although huge progress has been made in terms of early diagnosis, precision treatment in recent years, the overall 5-year survival rate of a patient remains low. In our study, we try to construct an autophagy-related lncRNA prognostic signature that may guide clinical practice.Methods: The mRNA and lncRNA expression matrix of lung adenocarcinoma patients were retrieved from TCGA database. Next, we constructed a co-expression network of lncRNAs and autophagy-related genes. Lasso regression and multivariate Cox regression were then applied to establish a prognostic risk model. Subsequently, a risk score was generated to differentiate high and low risk group and a ROC curve and Nomogram to visualize the predictive ability of current signature. Finally, gene ontology and pathway enrichment analysis were executed via GSEA.Results: A total of 1,703 autophagy-related lncRNAs were screened and five autophagy-related lncRNAs (LINC01137, AL691432.2, LINC01116, AL606489.1 and HLA-DQB1-AS1) were finally included in our signature. Judging from univariate(HR=1.075, 95% CI: 1.046–1.104) and multivariate(HR =1.088, 95%CI = 1.057 − 1.120) Cox regression analysis, the risk score is an independent factor for LUAD patients. Further, the AUC value based on the risk score for 1-year, 3-year, 5-year, was 0.735, 0.672 and 0.662 respectively. Finally, the lncRNAs included in our signature were primarily enriched in autophagy process, metabolism, p53 pathway and JAK/STAT pathway. Conclusions: Overall, our study indicated that the prognostic model we generated had certain predictability for LUAD patients’ prognosis.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


2021 ◽  
Author(s):  
Xue Liang ◽  
Ye Meng ◽  
Cong Li ◽  
Yangyang Wang ◽  
Lianfang Pu ◽  
...  

Abstract BackgroundChronic lymphocytic leukemia (CLL) is a group of highly heterogeneous mature B cell malignancy with various disease courses and diagnoses. Super-enhancer(SE) is a novel concept drew in recent years which is a cluster of enhancers involved in cell differentiation and tumorigenesis ,and is one of the promising therapeutic targets for cancer therapy. Although there is a multitude of prognostic markers in CLL, insights into the role of super-enhancer(SE)-related risk indicators are still lacking.MethodsThe CLL-related super-enhancers in training database were processed by Lasso penalized Cox regression analysis to screen a nine-gene prognostic model. And the associations between all of the individual markers and OS of CLL were assessed by Cox regression analysis. Besides, in order to understand the connection between individual genes and selected disease characteristics, like IGHV mutation status, FISH abnormality, and ZAP70 expression level, we performed correlation analysis.ResultsA nine-gene prognostic model was screened, including TCF7, VEGFA, MNT, GMIP, SLAMF1, TNFRSF25, GRWD1, SLC6AC, and LAG3. A SE-related risk score was further constructed and the robust predictive performance with 5-year survival and time-to-treatment (TTT) area under the curve(AUC): 0.997 and 1.000 in the training database and 0.628 and 0.673 in the testing database, respectively. Besides, a high correlation was found between the risk score and known prognostic markers of CLL, including the mutational status of immunoglobulin variable region loci (IGHV), chromosomal abnormalities, and ZAP70 expression. Meantime, we noticed that the expression of TCF7, GMIP, SLAMF1, TNFRSF25, and LAG3 in CLL were different from healthy donors(P<0.01), moreover, the risk score and LAG3 level of matched pairs before and after treatment samples varied significantly, although these results were not completely consistent in different datasets. ConclusionTherefore, the SE-associated nine-gene prognostic model developed here may be used to predict the prognosis and assist in the risk stratification of CLL patients in the future.


2020 ◽  
Author(s):  
Shigehisa Kubota ◽  
Tetsuya Yoshida ◽  
Susumu Kageyama ◽  
Takahiro Isono ◽  
Takeshi Yuasa ◽  
...  

Abstract Background: Accurate prediction of the prognosis of RCC using a single biomarker is challenging due to the genetic heterogeneity of the disease. However, it is essential to develop an accurate system to allow better patient selection for optimal treatment strategies. ARL4C, ECT2, SOD2 and STEAP3 are novel molecular biomarkers identified in earlier studies as survival-related genes by comprehensive analyses of 43 primary RCC tissues and RCC cell lines. Methods: To develop a prognostic model based on these multiple biomarkers, the expression of four biomarkers ARL4C, ECT2, SOD2, and STEAP3 in primary RCC tissue were semi-quantitatively investigated by immunohistochemical analysis in an independent cohort of 97 patients who underwent nephrectomy, and the clinical significance of these biomarkers were analyzed by survival analysis using Kaplan-Meier curves. The prognostic model was constructed by calculation of the contribution score to prognosis of each biomarker on Cox regression analysis, and its prognostic performance was validated.Results: Patients whose tumors had high expression of the individual biomarkers had shorter cancer-specific survival (CSS) from the time of primary nephrectomy. The prognostic model based on four biomarkers segregated the patients into a high- and low-risk scored group according to defined cut-off value. This approach was more robust in predicting CSS compared to each single biomarker alone in the total of 97 patients with RCC. Especially in the 36 metastatic RCC patients, our prognostic model could more accurately predict early events within 2 years of diagnosis of metastasis. In addition, high risk-scored patients with particular strong SOD2 expression had a much worse prognosis in 25 patients with metastatic RCC who were treated with molecular targeting agents. Conclusions: Our findings indicate that a prognostic model based on four novel biomarkers provides valuable data for prediction of clinical prognosis and useful information for considering the follow-up conditions and therapeutic strategies for patients with primary and metastatic RCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianguang Shi ◽  
Zishan Wang ◽  
Jing Guo ◽  
Yingqi Chen ◽  
Changyong Tong ◽  
...  

Epithelial-mesenchymal transition (EMT) process, which is regulated by genes of inducible factors and transcription factor family of signaling pathways, transforms epithelial cells into mesenchymal cells and is involved in tumor invasion and progression and increases tumor tolerance to clinical interventions. This study constructed a multigene marker for lung predicting the prognosis of lung adenocarcinoma (LUAD) patients by bioinformatic analysis based on EMT-related genes. Gene sets associated with EMT were downloaded from the EMT-gene database, and RNA-seq of LUAD and clinical information of patients were downloaded from the TCGA database. Differentially expressed genes were screened by difference analysis. Survival analysis was performed to identify genes associated with LUAD prognosis, and overlapping genes were taken for all the three. Prognosis-related genes were further determined by combining LASSO regression analysis for establishing a prediction signature, and the risk score equation for the prognostic model was established using multifactorial COX regression analysis to construct a survival prognostic model. The model accuracy was evaluated using subject working characteristic curves. According to the median value of risk score, samples were divided into a high-risk group and low-risk group to observe the correlation with the clinicopathological characteristics of patients. Combined with the results of one-way COX regression analysis, HGF, PTX3, and S100P were considered as independent predictors of LUAD prognosis. In lung cancer tissues, HGF and PTX3 expression was downregulated and S100P expression was upregulated. Kaplan-Meier, COX regression analysis showed that HGF, PTX3, and S100P were prognostic independent predictors of LUAD, and high expressions of all the three were all significantly associated with immune cell infiltration. The present study provided potential prognostic predictive biological markers for LUAD patients, and confirmed EMT as a key mechanism in LUAD progression.


2020 ◽  
Author(s):  
Shigehisa Kubota ◽  
Tetsuya Yoshida ◽  
Susumu Kageyama ◽  
Takahiro Isono ◽  
Takeshi Yuasa ◽  
...  

Abstract Background: Accurate prediction of the prognosis of RCC using a single biomarker is challenging due to the genetic heterogeneity of the disease. However, it is essential to develop an accurate system to allow better patient selection for optimal treatment strategies. ARL4C, ECT2, SOD2 and STEAP3 are novel molecular biomarkers identified in earlier studies as survival-related genes by comprehensive analyses of 43 primary RCC tissues and RCC cell lines. Methods: To develop a prognostic model based on these multiple biomarkers, the expression of four biomarkers ARL4C, ECT2, SOD2, and STEAP3 in primary RCC tissue were semi-quantitatively investigated by immunohistochemical analysis in an independent cohort of 97 patients who underwent nephrectomy, and the clinical significance of these biomarkers were analyzed by survival analysis using Kaplan-Meier curves. The prognostic model was constructed by calculation of the contribution score to prognosis of each biomarker on Cox regression analysis, and its prognostic performance was validated.Results: Patients whose tumors had high expression of the individual biomarkers had shorter cancer-specific survival (CSS) from the time of primary nephrectomy. The prognostic model based on four biomarkers segregated the patients into a high- and low-risk scored group according to defined cut-off value. This approach was more robust in predicting CSS compared to each single biomarker alone in the total of 97 patients with RCC. Especially in the 36 metastatic RCC patients, our prognostic model could more accurately predict early events within 2 years of diagnosis of metastasis. In addition, high risk-scored patients with particular strong SOD2 expression had a much worse prognosis in 25 patients with metastatic RCC who were treated with molecular targeting agents. Conclusions: Our findings indicate that a prognostic model based on four novel biomarkers provides valuable data for prediction of clinical prognosis and useful information for considering the follow-up conditions and therapeutic strategies for patients with primary and metastatic RCC.


2021 ◽  
Vol 19 (1) ◽  
pp. 253-270
Author(s):  
Xiao Chu ◽  
◽  
Weiqing Wang ◽  
Zhaoyun Sun ◽  
Feichao Bao ◽  
...  

<abstract> <p><italic>Purpose:</italic> Lung adenocarcinoma (LUAD) is a highly lethal subtype of primary lung cancer with a poor prognosis. N6-methyladenosine (m<sup>6</sup>A), the most predominant form of RNA modification, regulates biological processes and has critical prognostic implications for LUAD. Our study aimed to mine potential target genes of m<sup>6</sup>A regulators to explore their biological significance in subtyping LUAD and predicting survival. <italic>Methods:</italic> Using gene expression data from TCGA database, candidate target genes of m<sup>6</sup>A were predicted from differentially expressed genes (DEGs) in tumor based on M<sup>6</sup>A2 Target database. The survival-related target DEGs identified by Cox-regression analysis was used for consensus clustering analysis to subtype LUAD. Uni-and multi-variable Cox regression analysis and LASSO Cox-PH regression analysis were used to select the optimal prognostic genes for constructing prognostic score (PS) model. Nomogram encompassing PS score and independent prognostic factors was built to predict 3-year and 5-year survival probability. <italic>Results:</italic> We obtained 2429 DEGs in tumor tissue, within which, 1267 were predicted to m<sup>6</sup>A target genes. A prognostic m<sup>6</sup>A-DEGs network of 224 survival-related target DEGs was established. We classified LUAD into 2 subtypes, which were significantly different in OS time, clinicopathological characteristics, and fractions of 12 immune cell types. A PS model of five genes (C1QTNF6, THSD1, GRIK2, E2F7 and SLCO1B3) successfully split the training set or an independent GEO dataset into two subgroups with significantly different OS time (p &lt; 0.001, AUC = 0.723; p = 0.017, AUC = 0.705).A nomogram model combining PS status, pathologic stage, and recurrence was built, showing good performance in predicting 3-year and 5-year survival probability (C-index = 0.708, 0.723, p-value = 0). <italic>Conclusion:</italic> Using candidate m<sup>6</sup>A target genes, we obtained two molecular subtypes and designed a reliable five-gene PS score model for survival prediction in LUAD.</p> </abstract>


2021 ◽  
Vol 11 ◽  
Author(s):  
Sijin Sun ◽  
Kailun Fei ◽  
Guochao Zhang ◽  
Juhong Wang ◽  
Yannan Yang ◽  
...  

For lung adenocarcinoma (LUAD), patients of different stages have strong heterogeneity, and their overall prognosis varies greatly. Thus, exploration of novel biomarkers to better clarify the characteristics of LUAD is urgent. Multi-omics information of LUAD patients were collected form TCGA. Three independent LUAD cohorts were obtained from gene expression omnibus (GEO). A multi-omics correlation analysis of METTL5 was performed in TCGA dataset. To build a METTL5-associated prognostic score (MAPS). Spathial and random forest methods were first applied for feature selection. Then, LASSO was implemented to develop the model in TCGA cohort. The prognostic value of MAPS was validated in three independent GEO datasets. Finally, functional annotation was conducted using gene set enrichment analysis (GSEA) and the abundances of infiltrated immune cells were estimated by ImmuCellAI algorithm. A total of 901 LUAD patients were included. The expression of METTL5 in LUAD was significantly higher than that in normal lung tissue. And high expression of METTL5 indicated poor prognosis in all different stages (P &lt; 0.001, HR = 1.81). Five genes (RAC1, C11of24, METTL5, RCCD1, and SLC7A5) were used to construct MAPS and MAPS was significantly correlated with poor prognosis (P &lt; 0.001, HR = 2.15). Furthermore, multivariate Cox regression analysis suggested MAPS as an independent prognostic factor. Functional enrichment revealed significant association between MAPS and several immune components and pathways. This study provides insights into the potential significance of METTL5 in LUAD and MAPS can serve as a promising biomarker for LUAD.


Sign in / Sign up

Export Citation Format

Share Document