scholarly journals Domain Adaptation for Document Image Binarization via Domain Classification

2021 ◽  
Author(s):  
Carlos Garrido-Munoz ◽  
Adrián Sánchez-Hernández ◽  
Francisco J. Castellanos ◽  
Jorge Calvo-Zaragoza

Binarization represents a key role in many document image analysis workflows. The current state of the art considers the use of supervised learning, and specifically deep neural networks. However, it is very difficult for the same model to work successfully in a number of document styles, since the set of potential domains is very heterogeneous. We study a multi-source domain adaptation strategy for binarization. Within this scenario, we look into a novel hypothesis where a specialized binarization model must be selected to be used over a target domain, instead of a single model that tries to generalize across multiple domains. The problem then boils down to, given several specialized models and a new target set, deciding which model to use. We propose here a simple way to address this question by using a domain classifier, that estimates which of the source models must be considered to binarize the new target domain. Our experiments on several datasets, including different text styles and music scores, show that our initial hypothesis is quite promising, yet the way to deal with the decision of which model to use still shows great room for improvement.

2021 ◽  
Vol 12 (4) ◽  
pp. 1-18
Author(s):  
Jiajie Tian ◽  
Qihao Tang ◽  
Rui Li ◽  
Zhu Teng ◽  
Baopeng Zhang ◽  
...  

Unsupervised domain adaptation (UDA) for person re-identification (re-ID) is a challenging task due to large variations in human classes, illuminations, camera views, and so on. Currently, existing UDA methods focus on two-domain adaptation and are generally trained on one labeled source set and adapted on the other unlabeled target set. In this article, we put forward a new issue on person re-ID, namely, unsupervised multi-target domain adaptation (UMDA). It involves one labeled source set and multiple unlabeled target sets, which is more reasonable for practical real-world applications. Enabling UMDA has to learn the consistency for multiple domains, which is significantly different from the UDA problem. To ensure distribution consistency and learn the discriminative embedding, we further propose the Camera Identity-guided Distribution Consistency method that performs an alignment operation for multiple domains. The camera identities are encoded into the image semantic information to facilitate the adaptation of features. According to our knowledge, this is the first attempt on the unsupervised multi-target domain adaptation learning. Extensive experiments are executed on Market-1501, DukeMTMC-reID, MSMT17, PersonX, and CUHK03, and our method has achieved very competitive re-ID accuracy in multi-target domains against numerous state-of-the-art methods.


2021 ◽  
pp. 108099
Author(s):  
Francisco J. Castellanos ◽  
Antonio-Javier Gallego ◽  
Jorge Calvo-Zaragoza

2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


2016 ◽  
Vol 55 ◽  
pp. 131-163 ◽  
Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a "target'' domain when the only available training data belongs to a different "source'' domain. In this paper we present the Distributional Correspondence Indexing (DCI) method for domain adaptation in sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. Term correspondence is quantified by means of a distributional correspondence function (DCF). We propose a number of efficient DCFs that are motivated by the distributional hypothesis, i.e., the hypothesis according to which terms with similar meaning tend to have similar distributions in text. Experiments show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification. DCI also brings about a significantly reduced computational cost, and requires a smaller amount of human intervention. As a final contribution, we discuss a more challenging formulation of the domain adaptation problem, in which both the cross-domain and cross-lingual dimensions are tackled simultaneously.


Author(s):  
Zhen Qiu ◽  
Yifan Zhang ◽  
Hongbin Lin ◽  
Shuaicheng Niu ◽  
Yanxia Liu ◽  
...  

We study a practical domain adaptation task, called source-free unsupervised domain adaptation (UDA) problem, in which we cannot access source domain data due to data privacy issues but only a pre-trained source model and unlabeled target data are available. This task, however, is very difficult due to one key challenge: the lack of source data and target domain labels makes model adaptation very challenging. To address this, we propose to mine the hidden knowledge in the source model and exploit it to generate source avatar prototypes (i.e. representative features for each source class) as well as target pseudo labels for domain alignment. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. Specifically, CPGA consists of two stages: (1) prototype generation: by exploring the classification boundary information of the source model, we train a prototype generator to generate avatar prototypes via contrastive learning. (2) prototype adaptation: based on the generated source prototypes and target pseudo labels, we develop a new robust contrastive prototype adaptation strategy to align each pseudo-labeled target data to the corresponding source prototypes. Extensive experiments on three UDA benchmark datasets demonstrate the effectiveness and superiority of the proposed method.


2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


2020 ◽  
Vol 34 (04) ◽  
pp. 4028-4035 ◽  
Author(s):  
Aditya Grover ◽  
Christopher Chute ◽  
Rui Shu ◽  
Zhangjie Cao ◽  
Stefano Ermon

Given datasets from multiple domains, a key challenge is to efficiently exploit these data sources for modeling a target domain. Variants of this problem have been studied in many contexts, such as cross-domain translation and domain adaptation. We propose AlignFlow, a generative modeling framework that models each domain via a normalizing flow. The use of normalizing flows allows for a) flexibility in specifying learning objectives via adversarial training, maximum likelihood estimation, or a hybrid of the two methods; and b) learning and exact inference of a shared representation in the latent space of the generative model. We derive a uniform set of conditions under which AlignFlow is marginally-consistent for the different learning objectives. Furthermore, we show that AlignFlow guarantees exact cycle consistency in mapping datapoints from a source domain to target and back to the source domain. Empirically, AlignFlow outperforms relevant baselines on image-to-image translation and unsupervised domain adaptation and can be used to simultaneously interpolate across the various domains using the learned representation.


2022 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Chen Chen ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


2022 ◽  
Vol 16 (4) ◽  
pp. 1-25
Author(s):  
Hanrui Wu ◽  
Michael K. Ng

Multi-source domain adaptation is a challenging topic in transfer learning, especially when the data of each domain are represented by different kinds of features, i.e., Multi-source Heterogeneous Domain Adaptation (MHDA). It is important to take advantage of the knowledge extracted from multiple sources as well as bridge the heterogeneous spaces for handling the MHDA paradigm. This article proposes a novel method named Multiple Graphs and Low-rank Embedding (MGLE), which models the local structure information of multiple domains using multiple graphs and learns the low-rank embedding of the target domain. Then, MGLE augments the learned embedding with the original target data. Specifically, we introduce the modules of both domain discrepancy and domain relevance into the multiple graphs and low-rank embedding learning procedure. Subsequently, we develop an iterative optimization algorithm to solve the resulting problem. We evaluate the effectiveness of the proposed method on several real-world datasets. Promising results show that the performance of MGLE is better than that of the baseline methods in terms of several metrics, such as AUC, MAE, accuracy, precision, F1 score, and MCC, demonstrating the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document