Chapter 15. Human-Centered Concept Explanations for Neural Networks

2021 ◽  
Author(s):  
Chih-Kuan Yeh ◽  
Been Kim ◽  
Pradeep Ravikumar

Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image is important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


Author(s):  
Wen Xu ◽  
Jing He ◽  
Yanfeng Shu

Transfer learning is an emerging technique in machine learning, by which we can solve a new task with the knowledge obtained from an old task in order to address the lack of labeled data. In particular deep domain adaptation (a branch of transfer learning) gets the most attention in recently published articles. The intuition behind this is that deep neural networks usually have a large capacity to learn representation from one dataset and part of the information can be further used for a new task. In this research, we firstly present the complete scenarios of transfer learning according to the domains and tasks. Secondly, we conduct a comprehensive survey related to deep domain adaptation and categorize the recent advances into three types based on implementing approaches: fine-tuning networks, adversarial domain adaptation, and sample-reconstruction approaches. Thirdly, we discuss the details of these methods and introduce some typical real-world applications. Finally, we conclude our work and explore some potential issues to be further addressed.


Author(s):  
Dario Guidotti

Deep Neural Networks (DNNs) are popular machine learning models which have found successful application in many different domains across computer science. Nevertheless, providing formal guarantees on the behaviour of neural networks is hard and therefore their reliability in safety-critical domains is still a concern. Verification and repair emerged as promising solutions to address this issue. In the following, I will present some of my recent efforts in this area.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-36
Author(s):  
Dylan Chou ◽  
Meng Jiang

Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.


2021 ◽  
Vol 11 (19) ◽  
pp. 9296
Author(s):  
Talha Mahboob Alam ◽  
Mubbashar Mushtaq ◽  
Kamran Shaukat ◽  
Ibrahim A. Hameed ◽  
Muhammad Umer Sarwar ◽  
...  

Lack of education is a major concern in underdeveloped countries because it leads to poor human and economic development. The level of education in public institutions varies across all regions around the globe. Current disparities in access to education worldwide are mostly due to systemic regional differences and the distribution of resources. Previous research focused on evaluating students’ academic performance, but less has been done to measure the performance of educational institutions. Key performance indicators for the evaluation of institutional performance differ from student performance indicators. There is a dire need to evaluate educational institutions’ performance based on their disparities and academic results on a large scale. This study proposes a model to measure institutional performance based on key performance indicators through data mining techniques. Various feature selection methods were used to extract the key performance indicators. Several machine learning models, namely, J48 decision tree, support vector machines, random forest, rotation forest, and artificial neural networks were employed to build an efficient model. The results of the study were based on different factors, i.e., the number of schools in a specific region, teachers, school locations, enrolment, and availability of necessary facilities that contribute to school performance. It was also observed that urban regions performed well compared to rural regions due to the improved availability of educational facilities and resources. The results showed that artificial neural networks outperformed other models and achieved an accuracy of 82.9% when the relief-F based feature selection method was used. This study will help support efforts in governance for performance monitoring, policy formulation, target-setting, evaluation, and reform to address the issues and challenges in education worldwide.


2021 ◽  
Author(s):  
Victor Fung ◽  
Jiaxin Zhang ◽  
Eric Juarez ◽  
Bobby Sumpter

Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of machine learning models remarkably well-suited for materials applications. To date, a number of successful GNNs have been proposed and demonstrated for systems ranging from crystal stability to electronic property prediction and to surface chemistry and heterogeneous catalysis. However, a consistent benchmark of these models remains lacking, hindering the development and consistent evaluation of new models in the materials field. Here, we present a workflow and testing platform, MatDeepLearn, for quickly and reproducibly assessing and comparing GNNs and other machine learning models. We use this platform to optimize and evaluate a selection of top performing GNNs on several representative datasets in computational materials chemistry. From our investigations we note the importance of hyperparameter selection and find roughly similar performances for the top models once optimized. We identify several strengths in GNNs over conventional models in cases with compositionally diverse datasets and in its overall flexibility with respect to inputs, due to learned rather than defined representations. Meanwhile several weaknesses of GNNs are also observed including high data requirements, and suggestions for further improvement for applications in materials chemistry are proposed.


2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.


2021 ◽  
Author(s):  
Andreas Christ Sølvsten Jørgensen ◽  
Atiyo Ghosh ◽  
Marc Sturrock ◽  
Vahid Shahrezaei

AbstractThe modelling of many real-world problems relies on computationally heavy simulations. Since statistical inference rests on repeated simulations to sample the parameter space, the high computational expense of these simulations can become a stumbling block. In this paper, we compare two ways to mitigate this issue based on machine learning methods. One approach is to construct lightweight surrogate models to substitute the simulations used in inference. Alternatively, one might altogether circumnavigate the need for Bayesian sampling schemes and directly estimate the posterior distribution. We focus on stochastic simulations that track autonomous agents and present two case studies of real-world applications: tumour growths and the spread of infectious diseases. We demonstrate that good accuracy in inference can be achieved with a relatively small number of simulations, making our machine learning approaches orders of magnitude faster than classical simulation-based methods that rely on sampling the parameter space. However, we find that while some methods generally produce more robust results than others, no algorithm offers a one-size-fits-all solution when attempting to infer model parameters from observations. Instead, one must choose the inference technique with the specific real-world application in mind. The stochastic nature of the considered real-world phenomena poses an additional challenge that can become insurmountable for some approaches. Overall, we find machine learning approaches that create direct inference machines to be promising for real-world applications. We present our findings as general guidelines for modelling practitioners.Author summaryComputer simulations play a vital role in modern science as they are commonly used to compare theory with observations. One can thus infer the properties of a observed system by comparing the data to the predicted behaviour in different scenarios. Each of these scenarios corresponds to a simulation with slightly different settings. However, since real-world problems are highly complex, the simulations often require extensive computational resources, making direct comparisons with data challenging, if not insurmountable. It is, therefore, necessary to resort to inference methods that mitigate this issue, but it is not clear-cut what path to choose for any specific research problem. In this paper, we provide general guidelines for how to make this choice. We do so by studying examples from oncology and epidemiology and by taking advantage of developments in machine learning. More specifically, we focus on simulations that track the behaviour of autonomous agents, such as single cells or individuals. We show that the best way forward is problem-dependent and highlight the methods that yield the most robust results across the different case studies. We demonstrate that these methods are highly promising and produce reliable results in a small fraction of the time required by classic approaches that rely on comparisons between data and individual simulations. Rather than relying on a single inference technique, we recommend employing several methods and selecting the most reliable based on predetermined criteria.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


2021 ◽  
pp. 164-184
Author(s):  
Saiph Savage ◽  
Carlos Toxtli ◽  
Eber Betanzos-Torres

The artificial intelligence (AI) industry has created new jobs that are essential to the real world deployment of intelligent systems. Part of the job focuses on labelling data for machine learning models or having workers complete tasks that AI alone cannot do. These workers are usually known as ‘crowd workers’—they are part of a large distributed crowd that is jointly (but separately) working on the tasks although they are often invisible to end-users, leading to workers often being paid below minimum wage and having limited career growth. In this chapter, we draw upon the field of human–computer interaction to provide research methods for studying and empowering crowd workers. We present our Computational Worker Leagues which enable workers to work towards their desired professional goals and also supply quantitative information about crowdsourcing markets. This chapter demonstrates the benefits of this approach and highlights important factors to consider when researching the experiences of crowd workers.


Sign in / Sign up

Export Citation Format

Share Document