On Variable Precision Generalized Rough Sets and Incomplete Decision Tables

2021 ◽  
Vol 179 (1) ◽  
pp. 75-92
Author(s):  
Yu-Ru Syau ◽  
Churn-Jung Liau ◽  
En-Bing Lin

We present variable precision generalized rough set approach to characterize incomplete decision tables. We show how to determine the discernibility threshold for a reflexive relational decision system in the variable precision generalized rough set model. We also point out some properties of positive regions and prove a statement of the necessary condition for weak consistency of an incomplete decision table. We present two examples to illustrate the results obtained in this paper.

Kybernetes ◽  
2017 ◽  
Vol 46 (4) ◽  
pp. 693-705 ◽  
Author(s):  
Yasser F. Hassan

Purpose This paper aims to utilize machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications. Design/methodology/approach The objective of this work is to propose a model for deep rough set theory that uses more than decision table and approximating these tables to a classification system, i.e. the paper propose a novel framework of deep learning based on multi-decision tables. Findings The paper tries to coordinate the local properties of individual decision table to provide an appropriate global decision from the system. Research limitations/implications The rough set learning assumes the existence of a single decision table, whereas real-world decision problem implies several decisions with several different decision tables. The new proposed model can handle multi-decision tables. Practical implications The proposed classification model is implemented on social networks with preferred features which are freely distribute as social entities with accuracy around 91 per cent. Social implications The deep learning using rough sets theory simulate the way of brain thinking and can solve the problem of existence of different information about same problem in different decision systems Originality/value This paper utilizes machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hui Li ◽  
Yanfang Liu ◽  
William Zhu

Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based on a tolerance relation. First, a family of sets are constructed through the lower approximation of a tolerance relation and they are proved to satisfy the circuit axioms of matroids. Thus we establish a matroid with the family of sets as its circuits. Second, we study the properties of the matroid including the base and the rank function. Moreover, we investigate the relationship between the upper approximation operator based on a tolerance relation and the closure operator of the matroid induced by the tolerance relation. Finally, from a tolerance relation, we can get a matroid of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mohammed Atef ◽  
José Carlos R. Alcantud ◽  
Hussain AlSalman ◽  
Abdu Gumaei

The notions of the fuzzy β -minimal and maximal descriptions were established by Yang et al. (Yang and Hu, 2016 and 2019). Recently, Zhang et al. (Zhang et al. 2019) presented the fuzzy covering via ℐ , T -fuzzy rough set model ( FC ℐ T FRS ), and Jiang et al. (Jiang et al., in 2019) introduced the covering through variable precision ℐ , T -fuzzy rough sets ( CVP ℐ T FRS ). To generalize these models in (Jiang et al., 2019 and Zhang et al. 2019), that is, to improve the lower approximation and reduce the upper approximation, the present paper constructs eight novel models of an FC ℐ T FRS based on fuzzy β -minimal (maximal) descriptions. Characterizations of these models are discussed. Further, eight types of CVP ℐ T FRS are introduced, and we investigate the related properties. Relationships among these models are also proposed. Finally, we illustrate the above study with a numerical example that also describes its practical application.


Author(s):  
Malcolm J. Beynon

Rough set theory (RST), since its introduction in Pawlak (1982), continues to develop as an effective tool in classification problems and decision support. In the majority of applications using RST based methodologies, there is the construction of ‘if .. then ..’ decision rules that are used to describe the results from an analysis. The variation of applications in management and decision making, using RST, recently includes discovering the operating rules of a Sicilian irrigation purpose reservoir (Barbagallo, Consoli, Pappalardo, Greco, & Zimbone, 2006), feature selection in customer relationship management (Tseng & Huang, 2007) and decisions that insurance companies make to satisfy customers’ needs (Shyng, Wang, Tzeng, & Wu, 2007). As a nascent symbolic machine learning technique, the popularity of RST is a direct consequence of its set theoretical operational processes, mitigating inhibiting issues associated with traditional techniques, such as within-group probability distribution assumptions (Beynon & Peel, 2001). Instead, the rudiments of the original RST are based on an indiscernibility relation, whereby objects are grouped into certain equivalence classes and inference taken from these groups. Characteristics like this mean that decision support will be built upon the underlying RST philosophy of “Let the data speak for itself” (Dunstch & Gediga, 1997). Recently, RST was viewed as being of fundamental importance in artificial intelligence and cognitive sciences, including decision analysis and decision support systems (Tseng & Huang, 2007). One of the first developments on RST was through the variable precision rough sets model (VPRSß), which allows a level of mis-classification to exist in the classification of objects, resulting in probabilistic rules (see Ziarko, 1993; Beynon, 2001; Li and Wang, 2004). VPRSß has specifically been applied as a potential decision support system with the UK Monopolies and Mergers Commission (Beynon & Driffield, 2005), predicting bank credit ratings (Griffiths & Beynon, 2005) and diffusion of medicaid home care programs (Kitchener, Beynon, & Harrington, 2004). Further developments of RST include extended variable precision rough sets (VPRSl,u), which infers asymmetric bounds on the possible classification and mis-classification of objects (Katzberg & Ziarko, 1996), dominance-based rough sets, which bases their approach around a dominance relation (Greco, Matarazzo, & Slowinski, 2004), fuzzy rough sets, which allows the grade of membership of objects to constructed sets (Greco, Inuiguchi, & Slowinski, 2006), and probabilistic bayesian rough sets model that considers an appropriate certainty gain function (Ziarko, 2005). A literal presentation of the diversity of work on RST can be viewed in the annual volumes of the Transactions on Rough Sets (most recent year 2006), also the annual conferences dedicated to RST and its developments (see for example, RSCTC, 2004). In this article, the theory underlying VPRSl,u is described, with its special case of VPRSß used in an example analysis. The utilisation of VPRSl,u, and VPRSß, is without loss of generality to other developments such as those referenced, its relative simplicity allows the non-proficient reader the opportunity to fully follow the details presented.


Author(s):  
Tshilidzi Marwala

A number of techniques for handling missing data have been presented and implemented. Most of these proposed techniques are unnecessarily complex and, therefore, difficult to use. This chapter investigates a hot-deck data imputation method, based on rough set computations. In this chapter, characteristic relations are introduced that describe incompletely specified decision tables and then these are used for missing data estimation. It has been shown that the basic rough set idea of lower and upper approximations for incompletely specified decision tables may be defined in a variety of different ways. Empirical results obtained using real data are given and they provide a valuable insight into the problem of missing data. Missing data are predicted with an accuracy of up to 99%.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Zhaohao Wang ◽  
Lan Shu ◽  
Xiuyong Ding

Rough set theory is a powerful tool for dealing with uncertainty, granularity, and incompleteness of knowledge in information systems. This paper discusses five types of existing neighborhood-based generalized rough sets. The concepts of minimal neighborhood description and maximal neighborhood description of an element are defined, and by means of the two concepts, the properties and structures of the third and the fourth types of neighborhood-based rough sets are deeply explored. Furthermore, we systematically study the covering reduction of the third and the fourth types of neighborhood-based rough sets in terms of the two concepts. Finally, two open problems proposed by Yun et al. (2011) are solved.


2017 ◽  
Vol 153 (3) ◽  
pp. 271-290 ◽  
Author(s):  
Yu-Ru Syau ◽  
En-Bing Lin ◽  
Churn-Jung Liau

2011 ◽  
Vol 120 ◽  
pp. 410-413
Author(s):  
Feng Wang ◽  
Li Xin Jia

The speed signal of engine contains abundant information. This paper introduces rough set theory for feature extraction from engine's speed signals, and proposes a method of mining useful information from a mass of data. The result shows that the discernibility matrix algorithm can be used to reduce attributes in decision table and eliminate unnecessary attributes, efficiently extracted the features for evaluating the technical condition of engine.


2012 ◽  
Vol 548 ◽  
pp. 735-739
Author(s):  
Hong Mei Nie ◽  
Jia Qing Zhou

Rough set theory has been proposed by Pawlak as a useful tool for dealing with the vagueness and granularity in information systems. Classical rough set theory is based on equivalence relation. The covering rough sets are an improvement of Pawlak rough set to deal with complex practical problems which the latter one can not handle. This paper studies covering-based generalized rough sets. In this setting, we investigate common properties of classical lower and upper approximation operations hold for the covering-based lower and upper approximation operations and relationships among some type of covering rough sets.


Sign in / Sign up

Export Citation Format

Share Document