scholarly journals On the Expressive Power of Non-deterministic and Unambiguous Petri Nets over Infinite Words

2022 ◽  
Vol 183 (3-4) ◽  
pp. 243-291
Author(s):  
Olivier Finkel ◽  
Michał Skrzypczak

We prove that ω-languages of (non-deterministic) Petri nets and ω-languages of (nondeterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Turing machines. We also show that it is highly undecidable to determine the topological complexity of a Petri net ω-language. Moreover, we infer from the proofs of the above results that the equivalence and the inclusion problems for ω-languages of Petri nets are ∏21-complete, hence also highly undecidable. Additionally, we show that the situation is quite the opposite when considering unambiguous Petri nets, which have the semantic property that at most one accepting run exists on every input. We provide a procedure of determinising them into deterministic Muller counter machines with counter copying. As a consequence, we entail that the ω-languages recognisable by unambiguous Petri nets are △30 sets.

1983 ◽  
Vol 6 (3-4) ◽  
pp. 333-374
Author(s):  
H.J.M. Goeman ◽  
L.P.J. Groenewegen ◽  
H.C.M. Kleijn ◽  
G. Rozenberg

This paper continues the investigation froll1 [Goeman et al.] concerning the use of sets of places of a Petri net as additional (to input places) constraints for granting concession. Now interpretations of more general constraints are considered and expressed as Boolean expressions. This gives rise to various classes of constrained Petri nets. These are compared in the language theoretical framework introduced in [Goeman et al.]. An upperbound for the language defining power is found in the class of context-free programmed languages.


1991 ◽  
Vol 14 (4) ◽  
pp. 477-491
Author(s):  
Waldemar Korczynski

In this paper an algebraic characterization of a class of Petri nets is given. The nets are characterized by a kind of algebras, which can be considered as a generalization of the concept of the case graph of a (marked) Petri net.


2008 ◽  
Vol 44-46 ◽  
pp. 537-544
Author(s):  
Shi Yi Bao ◽  
Jian Xin Zhu ◽  
Li J. Wang ◽  
Ning Jiang ◽  
Zeng Liang Gao

The quantitative analysis of “domino” effects is one of the main aspects of hazard assessment in chemical industrial park. This paper demonstrates the application of heterogeneous stochastic Petri net modeling techniques to the quantitative assessment of the probabilities of domino effects of major accidents in chemical industrial park. First, five events are included in the domino effect models of major accidents: pool fire, explosion, boiling liquid expanding vapour explosion (BLEVE) giving rise to a fragment, jet fire and delayed explosion of a vapour cloud. Then, the domino effect models are converted into Generalized Stochastic Petri net (GSPN) in which the probability of the domino effect is calculated automatically. The Stochastic Petri nets’ models, which are state-space based ones, increase the modeling flexibility but create the state-space explosion problems. Finally, in order to alleviate the state-space explosion problems of GSPN models, this paper employs Stochastic Wellformed Net (SWN), a particular class of High-Level (colored) SPN. To conduct a case study on a chemical industrial park, the probability of domino effects of major accidents is calculated by using the GSPN model and SWN model in this paper.


1998 ◽  
Vol 08 (01) ◽  
pp. 21-66 ◽  
Author(s):  
W. M. P. VAN DER AALST

Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.


2012 ◽  
Vol 58 (4) ◽  
pp. 397-402 ◽  
Author(s):  
Michał Doligalski ◽  
Marian Adamski

Abstract The paper presents method for hierarchical configurable Petri nets description in VHDL language. Dual model is an alternative way for behavioral description of the discrete control process. Dual model consists of two correlated models: UML state machine diagram and hierarchical configurable Petri net (HCfgPN). HCfgPN are Petri nets variant with direct support of exceptions handling mechanism. Logical synthesis of dual model is realized by the description of HCfgPN model by means of hardware description language. The paper presents placesoriented method for HCfgPN description in VHDL language


Author(s):  
Goharik Petrosyan ◽  
Armen Gaboutchian ◽  
Vladimir Knyaz

Petri nets are a mathematical apparatus for modelling dynamic discrete systems. Their feature is the ability to display parallelism, asynchrony and hierarchy. First was described by Karl Petri in 1962 [1,2,8]. The Petri net is a bipartite oriented graph consisting of two types of vertices - positions and transitions connected by arcs between each other; vertices of the same type cannot be directly connected. Positions can be placed by tags (markers) that can move around the network. [2] Petri Nets (PN) used for modelling real systems is sometimes referred to as Condition/Events nets. Places identify the conditions of the parts of the system (working, idling, queuing, and failing), and transitions describe the passage from one state to another (end of a task, failure, repair...). An event occurs (a transition fire) when all the conditions are satisfied (input places are marked) and give concession to the event. The occurrence of the event entirely or partially modifies the status of the conditions (marking). The number of tokens in a place can be used to identify the number of resources lying in the condition denoted by that place [1,2,8]. Coloured Petri nets (CPN) is a graphical oriented language for design, specification, simulation and verification of systems [3-6,9,15]. It is in particular well-suited for systems that consist of several processes which communicate and synchronize. Typical examples of application areas are communication protocols, distributed systems, automated production systems, workflow analysis and VLSI chips. In the Classical Petri Net, tokens do not differ; we can say that they are colourless. Unlike standard Petri nets in Colored Petri Net of a position can contain tokens of arbitrary complexity, such as lists, etc., that enables modelling to be more reliable. The article is devoted to the study of the possibilities of modelling Colored Petri nets. The article discusses the interrelation of languages of the Colored Petri nets and traditional formal languages. The Venn diagram, which the author has modified, shows the relationship between the languages of the Colored Petri nets and some traditional languages. The language class of the Colored Petri nets includes a whole class of Context-free languages and some other classes. The paper shows modelling the task synchronization Patil using Colored Petri net, which can't be modeled using well- known operations P and V or by classical Petri network, since the operations P and V and classical Petri networks have limited mathematical properties which do not allow to model the mechanisms in which the process should be synchronized with the optimal allocation of resources.


2011 ◽  
Vol 121-126 ◽  
pp. 4350-4356
Author(s):  
Yan Pei Liu ◽  
Jun Hui Fu ◽  
Hong Yu Feng

With the larger and more complex of the size and function of software products,choosing an efficient modeling technique for analyzing complicated and ever-changing system plays a vital role.Object-Oriented Petri nets for its unique characteristics which are simple and laconic modeling method and strong mathematical analysis capacity becomes a hot research.In this paper,it explain that the object-oriented technology how to combine with Petri nets.The typical Object-Oriented Petri net modeling steps and analysis methods are expounded. Up-to-date research about OOPN and its main improved models OOCPN, OOAPN and OOTPN are summarized, the pros and cons of each modeling are analyzed.The interrelated topics and the future development about OOPN are also mentioned.


Sign in / Sign up

Export Citation Format

Share Document