scholarly journals SeMBlock: A semantic-aware meta-blocking approach for entity resolution

2021 ◽  
pp. 1-8
Author(s):  
Delaram Javdani ◽  
Hossein Rahmani ◽  
Gerhard Weiss

Entity resolution refers to the process of identifying, matching, and integrating records belonging to unique entities in a data set. However, a comprehensive comparison across all pairs of records leads to quadratic matching complexity. Therefore, blocking methods are used to group similar entities into small blocks before the matching. Available blocking methods typically do not consider semantic relationships among records. In this paper, we propose a Semantic-aware Meta-Blocking approach called SeMBlock. SeMBlock considers the semantic similarity of records by applying locality-sensitive hashing (LSH) based on word embedding to achieve fast and reliable blocking in a large-scale data environment. To improve the quality of the blocks created, SeMBlock builds a weighted graph of semantically similar records and prunes the graph edges. We extensively compare SeMBlock with 16 existing blocking methods, using three real-world data sets. The experimental results show that SeMBlock significantly outperforms all 16 methods with respect to two relevant measures, F-measure and pair-quality measure. F-measure and pair-quality measure of SeMBlock are approximately 7% and 27%, respectively, higher than recently released blocking methods.

Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 337
Author(s):  
Shaw-Hwa Lo ◽  
Yiqiao Yin

The field of explainable artificial intelligence (XAI) aims to build explainable and interpretable machine learning (or deep learning) methods without sacrificing prediction performance. Convolutional neural networks (CNNs) have been successful in making predictions, especially in image classification. These popular and well-documented successes use extremely deep CNNs such as VGG16, DenseNet121, and Xception. However, these well-known deep learning models use tens of millions of parameters based on a large number of pretrained filters that have been repurposed from previous data sets. Among these identified filters, a large portion contain no information yet remain as input features. Thus far, there is no effective method to omit these noisy features from a data set, and their existence negatively impacts prediction performance. In this paper, a novel interaction-based convolutional neural network (ICNN) is introduced that does not make assumptions about the relevance of local information. Instead, a model-free influence score (I-score) is proposed to directly extract the influential information from images to form important variable modules. This innovative technique replaces all pretrained filters found by trial-and-error with explainable, influential, and predictive variable sets (modules) determined by the I-score. In other words, future researchers need not rely on pretrained filters; the suggested algorithm identifies only the variables or pixels with high I-score values that are extremely predictive and important. The proposed method and algorithm were tested on real-world data set and a state-of-the-art prediction performance of 99.8% was achieved without sacrificing the explanatory power of the model. This proposed design can efficiently screen patients infected by COVID-19 before human diagnosis and can be a benchmark for addressing future XAI problems in large-scale data sets.


Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


2021 ◽  
pp. 1-13
Author(s):  
Hailin Liu ◽  
Fangqing Gu ◽  
Zixian Lin

Transfer learning methods exploit similarities between different datasets to improve the performance of the target task by transferring knowledge from source tasks to the target task. “What to transfer” is a main research issue in transfer learning. The existing transfer learning method generally needs to acquire the shared parameters by integrating human knowledge. However, in many real applications, an understanding of which parameters can be shared is unknown beforehand. Transfer learning model is essentially a special multi-objective optimization problem. Consequently, this paper proposes a novel auto-sharing parameter technique for transfer learning based on multi-objective optimization and solves the optimization problem by using a multi-swarm particle swarm optimizer. Each task objective is simultaneously optimized by a sub-swarm. The current best particle from the sub-swarm of the target task is used to guide the search of particles of the source tasks and vice versa. The target task and source task are jointly solved by sharing the information of the best particle, which works as an inductive bias. Experiments are carried out to evaluate the proposed algorithm on several synthetic data sets and two real-world data sets of a school data set and a landmine data set, which show that the proposed algorithm is effective.


2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


2020 ◽  
Vol 223 (2) ◽  
pp. 1378-1397
Author(s):  
Rosemary A Renaut ◽  
Jarom D Hogue ◽  
Saeed Vatankhah ◽  
Shuang Liu

SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada.


2009 ◽  
Vol 2 (1) ◽  
pp. 87-98 ◽  
Author(s):  
C. Lerot ◽  
M. Van Roozendael ◽  
J. van Geffen ◽  
J. van Gent ◽  
C. Fayt ◽  
...  

Abstract. Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141770907 ◽  
Author(s):  
Hanbo Wu ◽  
Xin Ma ◽  
Zhimeng Zhang ◽  
Haibo Wang ◽  
Yibin Li

Human daily activity recognition has been a hot spot in the field of computer vision for many decades. Despite best efforts, activity recognition in naturally uncontrolled settings remains a challenging problem. Recently, by being able to perceive depth and visual cues simultaneously, RGB-D cameras greatly boost the performance of activity recognition. However, due to some practical difficulties, the publicly available RGB-D data sets are not sufficiently large for benchmarking when considering the diversity of their activities, subjects, and background. This severely affects the applicability of complicated learning-based recognition approaches. To address the issue, this article provides a large-scale RGB-D activity data set by merging five public RGB-D data sets that differ from each other on many aspects such as length of actions, nationality of subjects, or camera angles. This data set comprises 4528 samples depicting 7 action categories (up to 46 subcategories) performed by 74 subjects. To verify the challengeness of the data set, three feature representation methods are evaluated, which are depth motion maps, spatiotemporal depth cuboid similarity feature, and curvature space scale. Results show that the merged large-scale data set is more realistic and challenging and therefore more suitable for benchmarking.


2017 ◽  
Vol 44 (2) ◽  
pp. 203-229 ◽  
Author(s):  
Javier D Fernández ◽  
Miguel A Martínez-Prieto ◽  
Pablo de la Fuente Redondo ◽  
Claudio Gutiérrez

The publication of semantic web data, commonly represented in Resource Description Framework (RDF), has experienced outstanding growth over the last few years. Data from all fields of knowledge are shared publicly and interconnected in active initiatives such as Linked Open Data. However, despite the increasing availability of applications managing large-scale RDF information such as RDF stores and reasoning tools, little attention has been given to the structural features emerging in real-world RDF data. Our work addresses this issue by proposing specific metrics to characterise RDF data. We specifically focus on revealing the redundancy of each data set, as well as common structural patterns. We evaluate the proposed metrics on several data sets, which cover a wide range of designs and models. Our findings provide a basis for more efficient RDF data structures, indexes and compressors.


Author(s):  
Sajad Badalkhani ◽  
Ramazan Havangi ◽  
Mohsen Farshad

There is an extensive literature regarding multi-robot simultaneous localization and mapping (MRSLAM). In most part of the research, the environment is assumed to be static, while the dynamic parts of the environment degrade the estimation quality of SLAM algorithms and lead to inherently fragile systems. To enhance the performance and robustness of the SLAM in dynamic environments (SLAMIDE), a novel cooperative approach named parallel-map (p-map) SLAM is introduced in this paper. The objective of the proposed method is to deal with the dynamics of the environment, by detecting dynamic parts and preventing the inclusion of them in SLAM estimations. In this approach, each robot builds a limited map in its own vicinity, while the global map is built through a hybrid centralized MRSLAM. The restricted size of the local maps, bounds computational complexity and resources needed to handle a large scale dynamic environment. Using a probabilistic index, the proposed method differentiates between stationary and moving landmarks, based on their relative positions with other parts of the environment. Stationary landmarks are then used to refine a consistent map. The proposed method is evaluated with different levels of dynamism and for each level, the performance is measured in terms of accuracy, robustness, and hardware resources needed to be implemented. The method is also evaluated with a publicly available real-world data-set. Experimental validation along with simulations indicate that the proposed method is able to perform consistent SLAM in a dynamic environment, suggesting its feasibility for MRSLAM applications.


1983 ◽  
Vol 66 ◽  
pp. 411-425
Author(s):  
Frank Hill ◽  
Juri Toomre ◽  
Laurence J. November

AbstractTwo-dimensional power spectra of solar five-minute oscillations display prominent ridge structures in (k, ω) space, where k is the horizontal wavenumber and ω is the temporal frequency. The positions of these ridges in k and ω can be used to probe temperature and velocity structures in the subphotosphere. We have been carrying out a continuing program of observations of five-minute oscillations with the diode array instrument on the vacuum tower telescope at Sacramento Peak Observatory (SPO). We have sought to establish whether power spectra taken on separate days show shifts in ridge locations; these may arise from different velocity and temperature patterns having been brought into our sampling region by solar rotation. Power spectra have been obtained for six days of observations of Doppler velocities using the Mg I λ5173 and Fe I λ5434 spectral lines. Each data set covers 8 to 11 hr in time and samples a region 256″ × 1024″ in spatial extent, with a spatial resolution of 2″ and temporal sampling of 65 s. We have detected shifts in ridge locations between certain data sets which are statistically significant. The character of these displacements when analyzed in terms of eastward and westward propagating waves implies that changes have occurred in both temperature and horizontal velocity fields underlying our observing window. We estimate the magnitude of the velocity changes to be on the order of 100 m s -1; we may be detecting the effects of large-scale convection akin to giant cells.


Sign in / Sign up

Export Citation Format

Share Document