Automatic verification method of progressive image model matching information based on machine learning

Author(s):  
Jie Yuan ◽  
Yuan Ji ◽  
Zhou Zhu ◽  
Liya Huang ◽  
Junfeng Qian ◽  
...  

In order to solve the problems of large error and low performance of traditional progressive image model matching information checking methods, an automatic progressive image model matching information checking method based on machine learning is proposed. The generation method of progressive image is analyzed, and the target image sample is obtained. On this basis, machine learning algorithm is used to segment progressive image samples. In each image segmentation part, crawler technology is used to automatically collect progressive image model matching information, and under the constraint of image model matching information checking standard, automatic checking of progressive image model matching information is realized from geometric structure, image content and other aspects. Experimental results show that the verification error of the design method is reduced by 0.687 Mb, and the quality of progressive image is improved.

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Omer ◽  
A Amir-Khalili ◽  
A Sojoudi ◽  
T Thao Le ◽  
S A Cook ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): SmartHeart EPSRC programme grant (www.nihr.ac.uk), London Medical Imaging and AI Centre for Value-Based Healthcare Background Quality measures for machine learning algorithms include clinical measures such as end-diastolic (ED) and end-systolic (ES) volume, volumetric overlaps such as Dice similarity coefficient and surface distances such as Hausdorff distance. These measures capture differences between manually drawn and automated contours but fail to capture the trust of a clinician to an automatically generated contour. Purpose We propose to directly capture clinicians’ trust in a systematic way. We display manual and automated contours sequentially in random order and ask the clinicians to score the contour quality. We then perform statistical analysis for both sources of contours and stratify results based on contour type. Data The data selected for this experiment came from the National Health Center Singapore. It constitutes CMR scans from 313 patients with diverse pathologies including: healthy, dilated cardiomyopathy (DCM), hypertension (HTN), hypertrophic cardiomyopathy (HCM), ischemic heart disease (IHD), left ventricular non-compaction (LVNC), and myocarditis. Each study contains a short axis (SAX) stack, with ED and ES phases manually annotated. Automated contours are generated for each SAX image for which manual annotation is available. For this, a machine learning algorithm trained at Circle Cardiovascular Imaging Inc. is applied and the resulting predictions are saved to be displayed in the contour quality scoring (CQS) application. Methods: The CQS application displays manual and automated contours in a random order and presents the user an option to assign a contour quality score 1: Unacceptable, 2: Bad, 3: Fair, 4: Good. The UK Biobank standard operating procedure is used for assessing the quality of the contoured images. Quality scores are assigned based on how the contour affects clinical outcomes. However, as images are presented independent of spatiotemporal context, contour quality is assessed based on how well the area of the delineated structure is approximated. Consequently, small contours and small deviations are rarely assigned a quality score of less than 2, as they are not clinically relevant. Special attention is given to the RV-endo contours as often, mostly in basal images, two separate contours appear. In such cases, a score of 3 is given if the two disjoint contours sufficiently encompass the underlying anatomy; otherwise they are scored as 2 or 1. Results A total of 50991 quality scores (24208 manual and 26783 automated) are generated by five expert raters. The mean score for all manual and automated contours are 3.77 ± 0.48 and 3.77 ± 0.52, respectively. The breakdown of mean quality scores by contour type is included in Fig. 1a while the distribution of quality scores for various raters are shown in Fig. 1b. Conclusion We proposed a method of comparing the quality of manual versus automated contouring methods. Results suggest similar statistics in quality scores for both sources of contours. Abstract Figure 1


Author(s):  
Nisha Yadav ◽  
Kakoli Banerjee ◽  
Vikram Bali

In the software industry, where the quality of the output is based on human performance, fatigue can be a reason for performance degradation. Fatigue not only degrades quality, but is also a health risk factor. Sleep disorders, depression, and stress are all results of fatigue which can contribute to fatal problems. This article presents a comparative study of different techniques which can be used for detecting fatigue of programmers and data miners who spent lots of time in front of a computer screen. Machine learning can used for worker fatigue detection also, but there are some factors which are specific for software workers. One of such factors is screen illumination. Screen illumination is the light of the computer screen or laptop screen that is casted on the workers face and makes it difficult for the machine learning algorithm to extract the facial features. This article presents a comparative study of the techniques which can be used for general fatigue detection and identifies the best techniques.


2019 ◽  
Vol 9 (15) ◽  
pp. 3037 ◽  
Author(s):  
Isaac Machorro-Cano ◽  
Giner Alor-Hernández ◽  
Mario Andrés Paredes-Valverde ◽  
Uriel Ramos-Deonati ◽  
José Luis Sánchez-Cervantes ◽  
...  

Overweight and obesity are affecting productivity and quality of life worldwide. The Internet of Things (IoT) makes it possible to interconnect, detect, identify, and process data between objects or services to fulfill a common objective. The main advantages of IoT in healthcare are the monitoring, analysis, diagnosis, and control of conditions such as overweight and obesity and the generation of recommendations to prevent them. However, the objects used in the IoT have limited resources, so it has become necessary to consider other alternatives to analyze the data generated from monitoring, analysis, diagnosis, control, and the generation of recommendations, such as machine learning. This work presents PISIoT: a machine learning and IoT-based smart health platform for the prevention, detection, treatment, and control of overweight and obesity, and other associated conditions or health problems. Weka API and the J48 machine learning algorithm were used to identify critical variables and classify patients, while Apache Mahout and RuleML were used to generate medical recommendations. Finally, to validate the PISIoT platform, we present a case study on the prevention of myocardial infarction in elderly patients with obesity by monitoring biomedical variables.


2019 ◽  
Vol 16 (10) ◽  
pp. 4425-4430 ◽  
Author(s):  
Devendra Prasad ◽  
Sandip Kumar Goyal ◽  
Avinash Sharma ◽  
Amit Bindal ◽  
Virendra Singh Kushwah

Machine Learning is a growing area in computer science in today’s era. This article is focusing on prediction analysis using K-Nearest Neighbors (KNN) Machine Learning algorithm. Data in the dataset are processed, analyzed and predicated using the specified algorithm. Introduction of various Machine Learning algorithms, its pros and cons have been discussed. The KNN algorithm with detail study is given and it is implemented on the specified data with certain parameters. The research work elucidates prediction analysis and explicates the prediction of quality of restaurants.


2020 ◽  
Author(s):  
Lisa Laux ◽  
Marie F.A. Cutiongco ◽  
Nikolaj Gadegaard ◽  
Bjørn Sand Jensen

AbstractAutomatic profiling of cell morphology is a powerful tool for inferring cell function. However, this technique retains a high barrier to entry. In particular, configuring image processing parameters for optimal cell profiling is susceptible to cognitive biases and dependent on user experience. Here, we use interactive machine learning to identify the optimum cell profiling configuration that maximises quality of the cell profiling outcome. The process is guided by the user, from whom a rating of the quality of a cell profiling configuration is obtained. We use Bayesian optimisation, an established machine learning algorithm, to learn from this information and automatically recommend the next configuration to examine with the aim to maximize the quality of the processing or analysis. Compared to existing interactive machine learning tools that require domain expertise for per-class or per-pixel annotations, we rely on users explicit assessment of output quality of the cell profiling task at hand. We validated our interactive approach against the standard human trial-and-error scheme to optimise an object segmentation task using the standard software CellProfiler. Our toolkit enabled rapid optimisation of an object segmentation pipeline, increasing the quality of object segmentation over a pipeline optimised through trial-and-error. Users also attested to the ease of use and reduced cognitive load enabled by our machine learning strategy over the standard approach. We envision that our interactive machine learning approach can enhance the quality and efficiency of pipeline optimisation to democratise image-based cell profiling.


Author(s):  
Amelia Zafra

The multiple-instance problem is a difficult machine learning problem that appears in cases where knowledge about training examples is incomplete. In this problem, the teacher labels examples that are sets (also called bags) of instances. The teacher does not label whether an individual instance in a bag is positive or negative. The learning algorithm needs to generate a classifier that will correctly classify unseen examples (i.e., bags of instances). This learning framework is receiving growing attention in the machine learning community and since it was introduced by Dietterich, Lathrop, Lozano-Perez (1997), a wide range of tasks have been formulated as multi-instance problems. Among these tasks, we can cite content-based image retrieval (Chen, Bi, & Wang, 2006) and annotation (Qi and Han, 2007), text categorization (Andrews, Tsochantaridis, & Hofmann, 2002), web index page recommendation (Zhou, Jiang, & Li, 2005; Xue, Han, Jiang, & Zhou, 2007) and drug activity prediction (Dietterich et al., 1997; Zhou & Zhang, 2007). In this chapter we introduce MOG3P-MI, a multiobjective grammar guided genetic programming algorithm to handle multi-instance problems. In this algorithm, based on SPEA2, individuals represent classification rules which make it possible to determine if a bag is positive or negative. The quality of each individual is evaluated according to two quality indexes: sensitivity and specificity. Both these measures have been adapted to MIL circumstances. Computational experiments show that the MOG3P-MI is a robust algorithm for classification in different domains where achieves competitive results and obtain classifiers which contain simple rules which add comprehensibility and simplicity in the knowledge discovery process, being suitable method for solving MIL problems (Zafra & Ventura, 2007).


Author(s):  
Ahona Ghosh ◽  
Chiung Ching Ho ◽  
Robert Bestak

Wireless sensor networks consist of unattended small sensor nodes having low energy and low range of communication. It has been observed that if there is any system to periodically start and stop the sensors sensing activities, then it saves some energy, and thus, the network lifetime gets extended. According to the current literature, security and energy efficiency are the two main concerns to improve the quality of service during transmission of data in wireless sensor networks. Machine learning has proved its efficiency in developing efficient processes to handle complex problems in various network aspects. Routing in wireless sensor network is the process of finding the route for transmitting data among different sensor nodes according to the requirement. Machine learning has been used in a broad way for designing energy efficient routing protocols, and this chapter reviews the existing works in the said domain, which can be the guide to someone who wants to explore the area further.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241696
Author(s):  
Xubo Leng ◽  
Margot Wohl ◽  
Kenichi Ishii ◽  
Pavan Nayak ◽  
Kenta Asahina

Automated quantification of behavior is increasingly prevalent in neuroscience research. Human judgments can influence machine-learning-based behavior classification at multiple steps in the process, for both supervised and unsupervised approaches. Such steps include the design of the algorithm for machine learning, the methods used for animal tracking, the choice of training images, and the benchmarking of classification outcomes. However, how these design choices contribute to the interpretation of automated behavioral classifications has not been extensively characterized. Here, we quantify the effects of experimenter choices on the outputs of automated classifiers of Drosophila social behaviors. Drosophila behaviors contain a considerable degree of variability, which was reflected in the confidence levels associated with both human and computer classifications. We found that a diversity of sex combinations and tracking features was important for robust performance of the automated classifiers. In particular, features concerning the relative position of flies contained useful information for training a machine-learning algorithm. These observations shed light on the importance of human influence on tracking algorithms, the selection of training images, and the quality of annotated sample images used to benchmark the performance of a classifier (the ‘ground truth’). Evaluation of these factors is necessary for researchers to accurately interpret behavioral data quantified by a machine-learning algorithm and to further improve automated classifications.


2020 ◽  
pp. 1-11
Author(s):  
Huang Wenming

The efficiency of traditional English teaching quality evaluation is relatively low, and evaluation statistics are very troublesome. Traditional evaluation method makes teaching evaluation a difficult project, and traditional evaluation method takes a long time and has low efficiency, which seriously affects the school’s efficiency. In order to improve the quality of English teaching, based on machine learning technology, this study combines Gaussian process to improve the algorithm, use mixed Gaussian to explore the distribution characteristics of samples, and improve the classic relevance vector machine model. Moreover, this study proposes an active learning algorithm that combines sparse Bayesian learning and mixed Gaussian, strategically selects and labels samples, and constructs a classifier that combines the distribution characteristics of the samples. In addition, this study designed a control experiment to analyze the performance of the model proposed in this study. It can be seen from the comparison that this research model has a good performance in the evaluation of the English teaching quality of traditional models and online models. This shows that the algorithm proposed in this paper has certain advantages, and it can be applied to the practice of English intelligent teaching system.


Sign in / Sign up

Export Citation Format

Share Document