Sustainable energy selection based on interval-valued intuitionistic fuzzy and neutrosophic aggregation operators

2020 ◽  
Vol 39 (5) ◽  
pp. 6553-6563
Author(s):  
Eda Bolturk ◽  
Murat Gülbay ◽  
Cengiz Kahraman

Sustainable energy selection has been a very popular problem among the researchers and various models including deterministic, probabilistic and fuzzy approaches have been developed for the solution of this problem. Fuzzy approaches to sustainable energy selection problems have been often handled in the literature. Aggregation operators for multi-expert decision making problems are an alternative solution technique for multi criteria decision making problems. Since neutrosophic and intuitionistic fuzzy aggregation operators are comparable extensions of ordinary fuzzy sets, they have been employed to aggregate multi-expert judgments. An illustrative energy selection problem is presented, solved by two approaches, and results are compared. The same linguistic data have been used for the comparison purpose.

Author(s):  
Bhagawati Prasad Joshi ◽  
Abhay Kumar

The fusion of multidimensional intuitionistic fuzzy information plays an important part in decision making processes under an intuitionistic fuzzy environment. In this chapter, it is observed that existing intuitionistic fuzzy Einstein hybrid aggregation operators do not follow the idempotency and boundedness. This leads to sometimes illogical and even absurd results to the decision maker. Hence, some new intuitionistic fuzzy Einstein hybrid aggregation operators such as the new intuitionistic fuzzy Einstein hybrid weighted averaging (IFEHWA) and the new intuitionistic fuzzy Einstein hybrid weighted geometric (IFEHWG) were developed. The new IFEHWA and IFEHWG operators can weigh the arguments as well as their ordered positions the same as the intuitionistic fuzzy Einstein hybrid aggregation operators do. Further, it is validated that the defined operators are idempotent, bounded, monotonic and commutative. Then, based on the developed approach, a multi-criteria decision-making (MCDM) procedure is given. Finally, a numerical example is conducted to demonstrate the proposed method effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dejian Yu

We establish a decision making model for evaluating hydrogen production technologies in China, based on interval-valued intuitionistic fuzzy set theory. First of all, we propose a series of interaction interval-valued intuitionistic fuzzy aggregation operators comparing them with some widely used and cited aggregation operators. In particular, we focus on the key issue of the relationships between the proposed operators and existing operators for clear understanding of the motivation for proposing these interaction operators. This research then studies a group decision making method for determining the best hydrogen production technologies using interval-valued intuitionistic fuzzy approach. The research results of this paper are more scientific for two reasons. First, the interval-valued intuitionistic fuzzy approach applied in this paper is more suitable than other approaches regarding the expression of the decision maker’s preference information. Second, the results are obtained by the interaction between the membership degree interval and the nonmembership degree interval. Additionally, we apply this approach to evaluate the hydrogen production technologies in China and compare it with other methods.


2013 ◽  
Vol 19 (1) ◽  
pp. 22-37 ◽  
Author(s):  
Seyed Hossein Razavi Hajiagha ◽  
Shide Sadat Hashemi ◽  
Edmundas Kazimieras Zavadskas

Multi-criteria decision making is an implicational field that concerns with selecting or designing the best scenarios among a finite set of scenarios based on a finite set of criteria. Different methods and techniques for handling this issue have been proposed. Complex proportional assessment is an analytical tool for solving multi-criteria decision making problems. Originally, the COPRAS method has been developed for decision making under a deterministic environment. Since uncertainty is an unavoidable property of decision making due to a lack of knowledge, this paper suggests an extended form of the COPRAS method used for group decision making problems in an uncertain environment where such uncertainty is captured through a generalized form of fuzzy sets - the so called interval valued intuitionistic fuzzy sets. An algorithmic scheme for the COPRAS-IVIF method has been introduced thus examining its application with reference to two numerical examples. It seems that the recommended framework of COPRAS-IVIF can be satisfactorily implemented in decision making problems under ambiguous and ill-defined conditions.


2014 ◽  
Vol 20 (4) ◽  
pp. 648-672 ◽  
Author(s):  
Wei Zhou ◽  
Jian Min He

An important research topic related to the theory and application of the interval-valued intuitionistic fuzzy weighted aggregation operators is how to determine their associated weights. In this paper, we propose a precise weight-determined (PWD) method of the monotonicity and scale-invariance, just based on the new score and accuracy functions of interval-valued intuitionistic fuzzy number (IIFN). Since the monotonicity and scale-invariance, the PWD method may be a precise and objective approach to calculate the weights of IIFN and interval-valued intuitionistic fuzzy aggregation operator, and a more suitable approach to distinguish different decision makers (DMs) and experts in group decision making. Based on the PWD method, we develop two new interval-valued intuitionistic fuzzy aggregation operators, i.e. interval-valued intuitionistic fuzzy ordered precise weighted averaging (IIFOPWA) operator and interval-valued intuitionistic fuzzy ordered precise weighted geometric (IIFOPWG) operator, and study their desirable properties in detail. Finally, we provide an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document