Basketball sports neural network model based on nonlinear classification

2020 ◽  
pp. 1-10
Author(s):  
Rongkai Duan ◽  
Pu Sun

With the continuous innovation of science and technology, the mathematical modeling and analysis of bodily injury in the process of exercise have always been a hot and difficult point in the research field of scholars. Although there are many research results on the nonlinear classification of the basketball sports neural network model, usually only one model is used, which has certain defects. The combination forecasting model based on the ARIMA model and neural network based on LSTM can make up for this defect. In the process of the experiment, the most important is the construction of the combination model and the acquisition of volunteer data in the process of the ball game. In this experiment, the ARIMA model is used as the linear part of the data, and LSTM neural network model is used to get the sequence of body injury. The results of the empirical study show that: it is reasonable to divide the injury of thigh and calf in the process of basketball sports, which is very consistent with the force point of the human body in the process of sports. The results of the two models predicting the average degree of bodily injury for many times are about 0.32 and 0.38 respectively, which are far less than 1. The execution time of the program for simultaneous prediction on the computer is about 1 minute, which is extremely effective.

Author(s):  
Olga Uvarova ◽  
Sergey Uvarov

The paper considers a mechanism for constructing a model based on artificial neural network for obtaining the values of the cohesive energy of a system of atoms. Cohesive energy allows for calculation of total energy of system. It is one of the most important characteristics of a structure. A computational experiment is carried out for one-component crystal structures of Si, Ge and C.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bo Liu ◽  
Qilin Wu ◽  
Yiwen Zhang ◽  
Qian Cao

Pruning is a method of compressing the size of a neural network model, which affects the accuracy and computing time when the model makes a prediction. In this paper, the hypothesis that the pruning proportion is positively correlated with the compression scale of the model but not with the prediction accuracy and calculation time is put forward. For testing the hypothesis, a group of experiments are designed, and MNIST is used as the data set to train a neural network model based on TensorFlow. Based on this model, pruning experiments are carried out to investigate the relationship between pruning proportion and compression effect. For comparison, six different pruning proportions are set, and the experimental results confirm the above hypothesis.


Sign in / Sign up

Export Citation Format

Share Document