Research on basketball sports neural network model based on nonlinear classification

2020 ◽  
pp. 1-10
Yongfen Yang

Intelligent video analysis has broad application prospects. How to automatically analyze and identify human behavior in video has attracted extensive attention from researchers at home and abroad. Moreover, researching effective video behavior recognition algorithms and designing efficient behavior recognition systems has important theoretical and practical value. This paper studies the nonlinear classification technique and applies the video behavior recognition algorithm to basketball recognition. Moreover, this paper studies the classical convolutional neural network model and several improvements. In addition, this paper explains the advantages of convolutional neural networks in feature extraction compared with traditional neural networks and analyzes the performance of the algorithm by designing actual experiments. The research results show that the algorithm can quickly identify multiple players on the field, and the method can effectively deal with occlusion and other issues with high accuracy and real-time.

2020 ◽  
Vol 23 (6) ◽  
pp. 1142-1154
Marat Rushanovich Gazizov ◽  
Karen Albertovich Grigorian

Model robustness to minor deviations in the distribution of input data is an important criterion in many tasks. Neural networks show high accuracy on training samples, but the quality on test samples can be dropped dramatically due to different data distributions, a situation that is exacerbated at the subgroup level within each category. In this article we show how the robustness of the model at the subgroup level can be significantly improved with the help of the domain adaptation approach to image embeddings. We have found that application of a competitive approach to embeddings limitation gives a significant increase of accuracy metrics in a complex subgroup in comparison with the previous models. The method was tested on two independent datasets, the accuracy in a complex subgroup on the Waterbirds dataset is 90.3 {y : waterbirds;a : landbackground}, on the CelebA dataset is 92.22 {y : blondhair;a : male}.

2012 ◽  
Vol 16 (4) ◽  
pp. 1151-1169 ◽  
A. El-Shafie ◽  
A. Noureldin ◽  
M. Taha ◽  
A. Hussain ◽  
M. Mukhlisin

Abstract. Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series. Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBFNN) and input delay neural network (IDNN), respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008) on a weekly basis and 22 yr (1987–2008) on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.

2002 ◽  
pp. 154-166 ◽  
David West ◽  
Cornelius Muchineuta

Some of the concerns that plague developers of neural network decision support systems include: (a) How do I understand the underlying structure of the problem domain; (b) How can I discover unknown imperfections in the data which might detract from the generalization accuracy of the neural network model; and (c) What variables should I include to obtain the best generalization properties in the neural network model? In this paper we explore the combined use of unsupervised and supervised neural networks to address these concerns. We develop and test a credit-scoring application using a self-organizing map and a multilayered feedforward neural network. The final product is a neural network decision support system that facilitates subprime lending and is flexible and adaptive to the needs of e-commerce applications.

2011 ◽  
Vol 187 ◽  
pp. 411-415
Lu Yue Xia ◽  
Hai Tian Pan ◽  
Meng Fei Zhou ◽  
Yi Jun Cai ◽  
Xiao Fang Sun

Melt index is the most important parameter in determining the polypropylene grade. Since the lack of proper on-line instruments, its measurement interval and delay are both very long. This makes the quality control quite difficult. A modeling approach based on stacked neural networks is proposed to estimation the polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural networks model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual networks using the criteria about minimization of sum of absolute prediction error is proposed. Application to real industrial data demonstrates that the polypropylene melt index can be successfully estimated using stacked neural networks. The results obtained demonstrate significant improvements in model accuracy, as a result of using stacked neural networks model, compared to using single neural network model.

2020 ◽  
pp. 1-10
Rongkai Duan ◽  
Pu Sun

With the continuous innovation of science and technology, the mathematical modeling and analysis of bodily injury in the process of exercise have always been a hot and difficult point in the research field of scholars. Although there are many research results on the nonlinear classification of the basketball sports neural network model, usually only one model is used, which has certain defects. The combination forecasting model based on the ARIMA model and neural network based on LSTM can make up for this defect. In the process of the experiment, the most important is the construction of the combination model and the acquisition of volunteer data in the process of the ball game. In this experiment, the ARIMA model is used as the linear part of the data, and LSTM neural network model is used to get the sequence of body injury. The results of the empirical study show that: it is reasonable to divide the injury of thigh and calf in the process of basketball sports, which is very consistent with the force point of the human body in the process of sports. The results of the two models predicting the average degree of bodily injury for many times are about 0.32 and 0.38 respectively, which are far less than 1. The execution time of the program for simultaneous prediction on the computer is about 1 minute, which is extremely effective.


We adapt concepts from the field of neural networks to assess the reliability of software, employing cumulative failures, reliability, remaining failures, and time to failure metrics. In addition, the risk of not achieving reliability, remaining failure, and time to failure goals are assessed. The purpose of the assessment is to compare a criterion, derived from a neural network model, for estimating the parameters of software reliability metrics, with the method of maximum likelihood estimation. To our surprise the neural network method proved superior for all the reliability metrics that were assessed by virtue of yielding lower prediction error and risk. We also found that considerable adaptation of the neural network model was necessary to be meaningful for our application – only inputs, functions, neurons, weights, activation units, and outputs were required to characterize our application.

2006 ◽  
Vol 16 (04) ◽  
pp. 305-317 ◽  

A neural-model-based control design for some nonlinear systems is addressed. The design approach is to approximate the nonlinear systems with neural networks of which the activation functions satisfy the sector conditions. A novel neural network model termed standard neural network model (SNNM) is advanced for describing this class of approximating neural networks. Full-order dynamic output feedback control laws are then designed for the SNNMs with inputs and outputs to stabilize the closed-loop systems. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. It is shown that most neural-network-based nonlinear systems can be transformed into input-output SNNMs to be stabilization synthesized in a unified way. Finally, some application examples are presented to illustrate the control design procedures.

2009 ◽  
Vol 19 (04) ◽  
pp. 285-294 ◽  

Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

2012 ◽  
Vol 452-453 ◽  
pp. 1116-1120
Hong Ping Li ◽  
Hong Li

Simulating the overlapping capillary electrophoresis spectrogram under the dissimilar conditions by the computer system , Choosing the overlapping capillary electrophoresis spectrogram simulated under the different conditions , processing the data to compose a neural network training regulations, Applying the artificial neural networks method to make a quantitative analysis about the multi-component in the overlapping capillary electrophoresis spectrogram,Using: Radial direction primary function neural network model and multi-layered perceptron neural network model. The findings indicated that, along with the increasing of the capillary electrophoresis spectrogram noise level, the related components’ ability of the two kinds of the overlapping capillary electrophoresis spectrogram by neural network model quantitative analysis drop down. Along with the increasing of the capillary electrophoresis spectrogram’s total dissociation degree, the multi-layered perceptron neural network model to the related components’ ability of the overlapping capillary electrophoresis spectum by quantitative analysis raise up.

2020 ◽  
Vol 161 ◽  
pp. 01031
Aleksandr Nikiforov ◽  
Aleksei Kuchumov ◽  
Sergei Terentev ◽  
Inessa Karamulina ◽  
Iraida Romanova ◽  

In the work based on agroecological and technological testing of varieties of grain crops of domestic and foreign breeding, winter triticale in particular, conducted on the experimental field of the Smolensk State Agricultural Academy between 2015 and 2019, we present the methodology and results of processing the experimental data used for constructing the neural network model. Neural networks are applicable for solving tasks that are difficult for computers of traditional design and humans alike. Those are processing large volumes of experimental data, automation of image recognition, approximation of functions and prognosis. Neural networks include analyzing subject areas and weight coefficients of neurons, detecting conflict samples and outliers, normalizing data, determining the number of samples required for teaching a neural network and increasing the learning quality when their number is insufficient, as well as selecting the neural network type and decomposition based on the number of input neurons. We consider the technology of initial data processing and selecting the optimal neural network structure that allows to significantly reduce modeling errors in comparison with neural networks created with unprepared source data. Our accumulated experience of working with neural networks has demonstrated encouraging results, which indicates the prospects of this area, especially when describing processes with large amounts of variables. In order to verify the resulting neural network model, we have carried out a computational experiment, which showed the possibility of applying scientific results in practice.

Sign in / Sign up

Export Citation Format

Share Document