Torso pitch motion effects on walking gait for biped robots
Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation method, it is usually assumed that the torso remains vertial during walking. It is very intuitive and simple. However, is the gait pattern of keeping the torso vertical the most efficient? This paper presents a gait pattern in which the torso has pitch motion during walking. We define the cyclic gait of a seven-link biped robot with multiple gait parameters. The gait parameters are determined by optimization. The optimization criterion is choosen to minimize the energy consumption per unit distance of the biped robot. In order to compare the energy consumption of the proposed gait pattern with the one of torso vertical gait pattern, we generate two sets of optimal gait with various walking step lengths and walking periods. The results show that the proposed gait pattern is more energy-efficiency than the torso vertical gait pattern.