A hybrid imperialist competitive algorithm for the outpatient scheduling problem with switching and preparation times

2022 ◽  
pp. 1-14
Author(s):  
Hui Yu ◽  
Jun-qing Li ◽  
Xiao-Long Chen ◽  
Wei-meng Zhang

 During recent years, the outpatient scheduling problem has attracted much attention from both academic and medical fields. This paper considers the outpatient scheduling problem as an extension of the flexible job shop scheduling problem (FJSP), where each patient is considered as one job. Two realistic constraints, i.e., switching and preparation times of patients are considered simultaneously. To solve the outpatient scheduling problem, a hybrid imperialist competitive algorithm (HICA) is proposed. In the proposed algorithm, first, the mutation strategy with different mutation probabilities is utilized to generate feasible and efficient solutions. Then, the diversified assimilation strategy is developed. The enhanced global search heuristic, which includes the simulated annealing (SA) algorithm and estimation of distribution algorithm (EDA), is adopted in the assimilation strategy to improve the global search ability of the algorithm.?Moreover, four kinds of neighborhood search strategies are introduced to?generate new?promising?solutions.?Finally, the empires invasion strategy?is?proposed to?increase the diversity of the population. To verify the performance of the proposed HICA, four efficient algorithms, including imperialist competitive algorithm, improved genetic algorithm, EDA, and modified artificial immune algorithm, are selected for detailed comparisons. The simulation results confirm that the proposed algorithm can solve the outpatient scheduling problem with high efficiency.

2012 ◽  
Vol 430-432 ◽  
pp. 737-740 ◽  
Author(s):  
Jie Zhang ◽  
Peng Zhang ◽  
Jian Xiong Yang ◽  
Ying Huang

This paper deals with the Job Shop Scheduling Problem with the minimization of makespan as the objective. A novel meta-heuristic named imperialist competitive algorithm (ICA) is adopted to solve the problem. Since appropriate design of the parameters has a significant impact on the performance of the algorithm, the parameters were chosen based on orthogonal test. A local search strategy based on critical path and critical block was used to improve the performance of the algorithm. At last the algorithm was tested on a set of standard benchmark instances, and the computational results showed that the algorithm proposed performed well in both convergence rate and better global optima achievement.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840112 ◽  
Author(s):  
Xiaoxing Zhang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, a multi-objective flexible job shop scheduling problem (MOFJSP) was studied systematically. A novel energy-saving scheduling model was established based on considering makespan and total energy consumption simultaneously. Different from previous studies, four types of energy consumption were considered in this model, including processing energy, idle energy, transport energy, and turn-on/off energy. In addition, a turn-off strategy is adopted for energy-saving. A modified shuffled frog-leaping algorithm (SFLA) was applied to solve this model. Moreover, operators of multi-point crossover and neighborhood search were both employed to obtain optimal solutions. Experiments were conducted to verify the performance of the SFLA compared with a non-dominated sorting genetic algorithm with blood variation (BVNSGA-II). The results show that this algorithm and strategy are very effective.


Sign in / Sign up

Export Citation Format

Share Document