Assessment of economic, energy and ecological efficiency of iron and steel production from orecoal briquettes in electric-furnace melting facility with application of hydrogen fuel

Author(s):  
L. N. Shevelev

According to the Russia National cadastre, emissions of carbon dioxide in the steel industry in 2019 in the sector “Industrial emissions” accounted for near 50% of the whole volume of its emissions in the whole country’s industry. A perspective way to decrease emissions of greenhouse gases is application of hydrogen in technological processes of metallurgical stuff production. A brief characteristic of basic technologies of hydrogen production presented. Concept of hydrogen technology development in steel industry of Russia stated, basic directions of metallurgical subindustries restructing related to implementation of the new fuel – “brown” hydrogen presented. Possibilities of “brown” hydrogen obtaining as a secondary energy resource of metallurgical production considered. Results of calculation of economic, energy and ecological effectiveness of cast iron, steel and “brown” hydrogen production in electric-furnace melting facilities of new type presented. It was shown that replacement of scheme “blast furnace-basic oxygen furnace”, including production of sinter and coke, by electric-furnace melting production with obtaining hot metal and steel from ore-coal briquettes and application of “brown” hydrogen and recycling of carbon dioxide enables to exclude greenhouse gases emissions. Capital investment into the hydrogen project of 1.0 million t/year capacity with restructing production capacities will account for 9.5 billion Rubles (120.0 million euro), economical effect – 5.4 billion Rubles (70.0 million euro), period of capital investments payback – 1.8 year.

Author(s):  
V. G. Lisienko ◽  
Yu. N. Chesnokov ◽  
A. V. Lapteva

The XXIst conference on climate, held in Paris in 2015, set coordination of efforts of all the countries as an object to reduce greenhouse gases emissions. To realize the conference decisions, it is necessary to implement technologies ensuring reduction of carbon dioxide forming in every industry. Steel industry is one of its sources. A proposed in publications technology of production of carbon-free steel for nuclear power engineering, based on reducing of iron oxides by aluminum in the process of melting considered. As per authors opinion, since the carbon of coke was excluded out of the process of steel production by the technology, it results in exclusion of greenhouse gases emissions. The purpose of the work was to assess the carbon footprint of the technology taking into account emissions of carbon-containing gases in the previous processes. It was shown that steel production by the analyzed technology with metallic aluminum application for iron oxides reduction has a rather considerable carbon footprint despite the practical absence of carbon dioxide emissions directly in the process of its smelting. It is caused by a large volume of greenhouse gases emissions in the neighbored sectors of production of energy, raw materials and materials used for steel production and exceeds 4500 kg of carbon dioxide per 1 t of steel smelted by the technology. To assess the value of carbon footprint at creation of new and perfection of existing technological processes of goods production in ferrous metallurgy and other industries of economy, it was proposed to take into account its value along the whole chain of previous and neighbored production sectors.


2016 ◽  
Vol 9 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Dionisio H. Malagón-Romero ◽  
Alexander Ladino ◽  
Nataly Ortiz ◽  
Liliana P. Green

Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 23 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Angela Margaret Evans

Abstract Background Healthcare aims to promote good health and yet demonstrably contributes to climate change, which is purported to be ‘the biggest global health threat of the 21st century’. This is happening now, with healthcare as an industry representing 4.4% of global carbon dioxide emissions. Main body Climate change promotes health deficits from many angles; however, primarily it is the use of fossil fuels which increases atmospheric carbon dioxide (also nitrous oxide, and methane). These greenhouse gases prevent the earth from cooling, resulting in the higher temperatures and rising sea levels, which then cause ‘wild weather’ patterns, including floods, storms, and droughts. Particular vulnerability is afforded to those already health compromised (older people, pregnant women, children, wider health co-morbidities) as well as populations closer to equatorial zones, which encompasses many low-and-middle-income-countries. The paradox here, is that poorer nations by spending less on healthcare, have lower carbon emissions from health-related activity, and yet will suffer most from global warming effects, with scant resources to off-set the increasing health care needs. Global recognition has forged the Paris agreement, the United Nations sustainable developments goals, and the World Health Organisation climate change action plan. It is agreed that most healthcare impact comes from consumption of energy and resources, and the production of greenhouse gases into the environment. Many professional associations of medicine and allied health professionals are advocating for their members to lead on environmental sustainability; the Australian Podiatry Association is incorporating climate change into its strategic direction. Conclusion Podiatrists, as allied health professionals, have wide community engagement, and hence, can model positive environmental practices, which may be effective in changing wider community behaviours, as occurred last century when doctors stopped smoking. As foot health consumers, our patients are increasingly likely to expect more sustainable practices and products, including ‘green footwear’ options. Green Podiatry, as a part of sustainable healthcare, directs us to be responsible energy and product consumers, and reduce our workplace emissions.


Author(s):  
Douglas P Harrison ◽  
Zhiyong Peng

Hydrogen is an increasingly important chemical raw material and a probable future primary energy carrier. In many current and anticipated applications the carbon monoxide impurity level must be reduced to low-ppmv levels to avoid poisoning catalysts in downstream processes. Methanation is currently used to remove carbon monoxide in petroleum refining operations while preferential oxidation (PROX) is being developed for carbon monoxide control in fuel cells. Both approaches add an additional step to the multi-step hydrogen production process, and both inevitably result in hydrogen loss. The sorption enhanced process for hydrogen production, in which steam-methane reforming, water-gas shift, and carbon dioxide removal reactions occur simultaneously in the presence of a nickel-based reforming catalyst and a calcium-based carbon dioxide sorbent, is capable of producing high purity hydrogen containing minimal carbon monoxide in a single processing step. The process also has the potential for producing pure CO2 that is suitable for subsequent use or sequestration during the sorbent regeneration step. The current research on sorption-enhanced production of low-carbon monoxide hydrogen is an extension of previous research in this laboratory that proved the feasibility of producing 95+% hydrogen (dry basis), but without concern for the carbon monoxide concentration. This paper describes sorption-enhanced reaction conditions – temperature, feed gas composition, and volumetric feed rate – required to produce 95+% hydrogen containing low carbon monoxide concentrations suitable for direct use in, for example, a proton exchange membrane fuel cell.


Sign in / Sign up

Export Citation Format

Share Document