Shading devices applied to sun control in occupied spaces in summer conditions

2021 ◽  
pp. 127-139
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Hazim Awbi

This work presents a study of a numerical building dynamic simulation in the development of a horizontal shading device passive solution applied in a university canteen. The used building dynamic simulation software, that simulates simultaneously a building or groups of buildings with complex topologies, in transient conditions, considers the solar radiation, the HVAC system, glass radiative proprieties, radiative heat exchanges, thermal solutions, thermal comfort of occupants, indoor air quality, among others properties. The development of efficient external horizontal shading devices is made by a numerical model that uses the sun's trajectory and its position in relation to the windows where it falls. The canteen is constituted by three levels and is divided in 37 spaces. In the numerical simulation, 100 transparent surfaces and 773 opaque surfaces are considered. Special attention is given in the students’ main canteen, professors’ main canteen, specialized canteen and university bar. The simulation is made, in summer conditions, considered the selected spaces without and with horizontal shading devices placed above their windows. In the simulation, the occupancy and the implemented ventilation system are considered. Regarding to the obtained results the use of horizontal shading devices can reduce the air temperature range and improve the thermal comfort level that the occupants are subjected in some of the analyzed spaces.

2019 ◽  
Vol 29 (7) ◽  
pp. 972-986 ◽  
Author(s):  
Xiang Deng ◽  
Zijing Tan

The utilisation of automatic controlled natural wind in office buildings to maintain indoor thermal comfort has gained wide attention in recent years. Generally, it is not necessary to ensure that the whole internal volume of a building with large open spaces meets thermal comfort requirements. Primary focus should be on occupied areas. Accordingly, the local thermal comfort in an open-plan office with automatic controlled natural ventilation system was investigated numerically and experimentally. A computational fluid dynamics (CFD)-based method was presented for indoor environment and thermal comfort prediction. Long-term in situ measurement was conducted during summer and transition seasons. The meteorological data were collected by a mini weather station located on the roof of the target building. Meanwhile, indoor air velocity, temperature, turbulence intensity and wall temperatures were recorded locally. Three thermal comfort indices, i.e. thermal stratification represented by percentage dissatisfied (PD), the extended predicted mean vote (PMVe) and draught rate were employed to evaluate the thermal comfort level of the interested areas during natural ventilation period. The numerical results revealed a risk of local thermal dissatisfaction under low outdoor temperature and strong windy conditions.


2017 ◽  
Vol 32 (1) ◽  
pp. 32
Author(s):  
Beatriz Kenickel Nunes ◽  
Silvia Regina Lucas de Souza ◽  
Arilson José de Oliveira Júnior ◽  
Enedy Allan Rodrigues Cordeiro ◽  
Reginaldo Apolinário de Almeida

As observações geradas em estudos sobre instalações de suínos têm demonstrado que o desempenho térmico das instalações comumente utilizadas pelos produtores vem apresentando um quadro de desconforto térmico na fase da maternidade, devido às adaptações construtivas feitas com a finalidade de atender tanto as necessidades da matriz quanto dos leitões. Sendo assim, o objetivo deste trabalho foi utilizar a ferramenta de fluidodinâmica computacional (CFD) para realizar o mapeamento do microambiente de duas instalações de suínos, visando o bem-estar dos animais. As simulações foram obtidas em uma maternidade da Fazenda Experimental Lageado, UNESP, Botucatu/SP e de uma granja comercial localizada em Santa Cruz do Rio Pardo/SP. Para as simulações utilizou-se o software Autodesk® CFD Simulation juntamente com o AutoCAD 3D, para desenho das instalações. As condições de conforto térmico foram analisadas por meio da aplicação do índice de voto médio estimado – PMV. Na instalação comercial simulada observou-se que as aberturas laterais não são suficientes para manter uma condição de conforto térmico, segundo o índice PMV. Com o uso da fluidodinâmica computacional foi possível modificar o ambiente mediante a elevação do seu fluxo de ar, o que demonstrou ser uma solução na diminuição da temperatura do ar e alcance de uma condição de conforto térmico.PALAVRAS-CHAVE: Conforto térmico, bem-estar de suínos, fluidodinâmica computacional, CFD, simuladores. FLUIDODYNAMICS COMPUTATIONAL USED FOR THE MAPPING OF THERMAL CONDITIONS IN INSTALLATION OF SWINE MATERNITIESABSTRACT: Studies have shown that the thermal performance of facilities commonly used by producers has presented an environmental discomfort picture in the maternity phase due to constructive adjustments made in order to meet needs of both piglets and sow. Therefore, this work aimed to use the computational fluid dynamic tool for mapping the microclimate of two facilities, which purpose of improving the animal welfare. The simulations were conducted at experimental farm “Lageado”, UNESP, Botucatu/SP and a commercial facility, located in Santa Cruz do Rio Pardo/SP. For simulations were used the Autodesk® CFD Simulation software along with AutoCAD 3D (facilities design). Thermal comfort conditions were analyzed by means of predicted mean vote – PMV. In simulated commercial facility was observed that side vents are not sufficient to establish a thermal comfort condition, according to PMV. With computational fluid dynamic was possible to change the environment through air flow increase, showing to be a solution in decrease of air temperature and reach of thermal comfort condition.KEYWORDS: Thermal comfort, swine welfare, computational fluid dynamic, CFD, simulators.


2020 ◽  
Vol 3 (1) ◽  
pp. p1
Author(s):  
Jad Hammoud ◽  
Elise Abi Rached

The increasing of energy demands has considerably increased the requirements for new and traditional buildings in different climate zones. Unprecedented heat waves have increased climate temperature, in particular, in moderate climate zones such as Lebanon. In Beirut, only the residential sector consumes 50% of total electricity consumption. HVAC (Heating, Ventilation and Air conditioning) systems are used to reach acceptable thermal comfort levels in the new residential buildings. In case of the traditional bourgeoisie houses in Beirut, there are no discussions about the use of HVAC systems to achieve the required thermal comfort level. Thus, to reach an acceptable thermal comfort level, these houses which already contain natural ventilation system shall adapt the modern thermal comfort requirements and thermal comfort strategies and technologies where their architectural features and existing materials condition the available solutions. In order to identify the best options within the possible intervention lines (envelopes, passive strategies, equipment, renewable energy systems), it is necessary to perceive the real performance of this type of houses. In this context, the article presents the results of the study of thermal performance and comfort in a three case studies located in Beirut. Detailed field data records collected are analyzed, with a view to identify the indoor thermal environment with respect to outdoor thermal environment in different seasons. Monitoring also included measurement of hygrothermal parameters and surveys of occupant thermal sensation.


2019 ◽  
Vol 9 (1) ◽  
pp. 25-28
Author(s):  
Ana Diana Ancas ◽  
Florin-Emilian Turcanu ◽  
Mihai Profire ◽  
Marina Verdes ◽  
Marius Costel Balan

Abstract In the paper is presented a heating system installed in church and the interior climate generated. Thermal Comfort is the purpose of each designer, since the design stage and has to be ensure for the churchgoers, but even for the interior finishes. The heating system that uses hydronic radiators is evaluated trough the CFD modelling, in order to evaluate pro and contra arguments. The simulation has been made in a 3d simulation software environment, in Autodesk CFD with good results.


2021 ◽  
Vol 321 ◽  
pp. 03008
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
M. Manuela Lúcio ◽  
M. Inês Conceição ◽  
André Ramos ◽  
...  

This work evaluates the passengers thermal comfort level inside a vehicles compartment. The numerical study, made in winter conditions, consider a bus indoor environment equipped with internal curtains, internal seats, lateral panels, ceiling, floor and occupied by 52 passengers. The numerical model considers the passengers and vehicle grid generation, passengers body and clothing thermal response and passengers thermal comfort level. The grid generation is used to evaluate the view factors and Mean Radiant Temperature that the passengers are subjected. In this calculus the passengers and the vehicles surfaces shading devices are considered. The thermal response numerical models consider the energy and mass balance integral equations. The thermal comfort evaluation considers the heat produced inside the body and the heat exchange between the body and the environment. The human body numerical model considers also the thermoregulatory system to control the temperature. The numerical model is used to evaluate the thermal comfort level that seated passengers are subjected in a bus equipped with asymmetrical warm curtains. Three Cases studies were developed: the first one considers the temperature curtains equal to the indoor bus surfaces, while the other two consider higher temperatures values. All Cases are thermally comfortable according to the standards.


2021 ◽  
Vol 39 (1) ◽  
pp. 275-291
Author(s):  
Md Sarfaraz Alam ◽  
Urmi Ravindra Salve

There are ample literature studies available, focusing on hot-humid built environment, which have achieved an increase in thermal comfort conditions by proper installation of ventilation-systems. The present thermal comfort study has been carried out in the kitchen environment of a non-air-conditioned railway pantry car in Indian Railways. The purpose is to enhance thermal comfort level under the currently applied ventilation system inside the kitchen of pantry car by determining the standard effective temperature (SET) index. During the summer and winter seasons, a field study was carried out to obtain the value of air temperature, globe temperature, relative humidity, and air velocity inside the pantry car for estimation of the SET index. A computational fluid dynamics (CFD) analysis was used to obtain a better-modified case model of the pantry car kitchen for the improvement of thermal comfort. The design interventions for the pantry car kitchen were created, with emphasis on increasing energy efficiency based on low-power consumption air ventilation system. The study results indicated that, modified case-I model has a better ventilation design concept as compare to the existing and other models, which increased the air velocity and significantly decreased the air temperature inside the kitchen of pantry car at all cooking periods. A value of SET (28.6–30℃) was found with a comfortable thermal sensation within all cooking periods, which is better for the pantry car workers. This finding suggests a sustainable improvement in the thermal environment of the "non-air-conditioned" pantry car kitchen in the Indian Railways, which can be applied immediately.


2011 ◽  
Vol 199-200 ◽  
pp. 1505-1508
Author(s):  
Jia Fang Song

In this paper, the simulation software was applied to evaluate a hybrid ventilated combined mechanical and naturally ventilated (atrium area to be naturally ventilated) building. In order to understand the impact of the usage of natural ventilation on thermal comfort in atrium, we utilized TAS to simulate the air temperature and air velocity distribution for the atrium. A modeled three-storey commercial office building was used as the main subject of this analysis. To determine the thermal comfort level of the central atrium, Parameters will be set in such a way that the full height windows will be 100% open. Results were tabularized to determine and analysis the output of the simulation. Recommendations will be then given based on the output performance of the building.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Feng-Chi Liao ◽  
Ming-Jen Cheng ◽  
Ruey-Lung Hwang

A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.


2010 ◽  
Vol 171-172 ◽  
pp. 364-367
Author(s):  
Jia Fang Song

This paper introduces the application of the TAS simulation support software to determine the energy performance in between a full mechanical ventilated building than that of a hybrid ventilated-- combined mechanical and naturally ventilated (atrium area to be naturally ventilated) building. A modeled three-storey commercial office building will be used as the main subject of this analysis. To determine the thermal comfort level of the central atrium, Parameters will be set in such a way that the full height windows will be 100% open. Results will be then tabularized to determine and analysis the output of the simulation. Recommendations will be then given based on the output performance of the building. In Tropics, it’s very difficult to achieve better thermal comfort in a naturally ventilated building. With the help of these simulation tools we can find whether natural ventilation is possible in this tropical climate in terms of thermal comfort, ventilation system and energy demand.


2019 ◽  
Vol 11 (3) ◽  
pp. 593 ◽  
Author(s):  
John Ogbeba ◽  
Ercan Hoskara

In this paper, we evaluate passive and active strategies that can be used in solving the heating problems in the residential sector of Northern Cyprus. In doing so, we propose the use of photovoltaics as a shading device (PVSD). PVSD is known to produce clean energy from solar radiation and it also reduces the energy consumed for cooling. We use an empirical method to evaluate the performance of a typical family detached dwelling in Famagusta, Cyprus. The simulation result derived from the study indicates that the strategic use of PVSDs for openings oriented towards the east, west, and south can reduce its energy consumption by almost 50% in three months of the year and cut down up to 400 kWh of energy consumption through the year, thus raising the comfort level of the building by about 20%. It will also generate nearly 2800 W that can provide up to 50% of the electricity demand.


Sign in / Sign up

Export Citation Format

Share Document