scholarly journals Lead Accumulation of Siam Weed (Chromolaena odorata) Grown in Hydroponics Under Drought-stressed Conditions

2021 ◽  
Vol 20 (2) ◽  
pp. 1-9
Author(s):  
Chanaradee Srirueang ◽  
◽  
Nuttamon Gongseng ◽  
Sukhumaporn Saeng-ngam ◽  
Kongkeat Jampasri ◽  
...  

The phytoremediation potential of Siam weed (Chromolaena odorata) was tested in lead (Pb) contaminated nutrient media with 5% (w/v) of polyethylene glycol (PEG) 6000 induced drought stress conditions. The plant was treated with 0, 5, 10, 20, and 50 mg/L Pb for 15 days. Different concentrations of Pb or in combination with PEG had no effect on plant growth parameters. Drought reduced water content (WC) (p<0.05), but did not affect the reduction of chlorophyll content and photochemical efficiency in plant tissues after 15 days of treatment. Under drought conditions, plants showed the largest Pb accumulation in roots (5,503.7 mg/kg) and exhibited the highest uptake at 50 mg/L solution (18.24 g/plant), but the translocation factor values (TFs) of Pb from root to shoot were all less than 1. Under both drought and non-drought conditions, the bioconcentration factor values (BCFs) decreased with increasing Pb concentrations. According to BCFs and TFs, C. odorata may be promising for phytostabilization of Pb. Based on high biomass, tolerance, and Pb uptake, the result of this hydroponic study test reveals that C. odorata has a good potential for developing Pb phytoremediation strategies in drought-stressed conditions.

2021 ◽  
Author(s):  
Dalia Abd El-Azeem Ahmed ◽  
Tarek M. Galal ◽  
Hatim M. Al-Yasi ◽  
Loutfy M. Hassan ◽  
Dalia Fahmy Slima

Abstract Usage of wastewater to irrigate crops increases in Egypt and the whole world as a result of water shortage. This study is conducted to explore the potential of Abelmoschus esculentus Moench. (Okra plant) to accumulate and translocate eight trace metals: lead: Pb, cadmium: Cd, chromium: Cr, copper: Cu, iron: Fe, manganese: Mn, nickel: Ni and zinc: Zn in its different tissues due to irrigation with untreated industrial wastewater. It extended to assess the effect of the irrigation with wastewater on the growth parameters, nutrients, pigments and organic contents of the cultivated okra plants.Two studied sites at South of Cairo was conducted, the first site (29°42'31.17" N and 31°15'11.56" E); represented by five cultivated fields irrigated with Nile water (control) and the second site (29°42'37.87" N and 31°17'14.53" E); fields irrigated with effluent receive untreated industrial wastewater. Three composite soil and irrigated water samples were collected from each site. A significant decrease in nutrients: nitrogen (N), Potassium (K) and Phosphorous (P) in soil and Plants were resulted due to irrigation with wastewater. Also, there was a significant increase in trace metals concentration in both soil and plants irrigated with wastewater. A significant decrement in okra growth parameters and leaves photosynthetic pigments (chlorophyll a and b and carotenoids) due to irrigation with wastewater. Iron was the highest accumulated metal in the plant's fruits (edible part) irrigated with wastewater. Also, the concentration of Cd, Cu, Fe, Mn, Ni and Zn (42.57, 140,67, 2756.67, 1293.33, 1326.67 and 877.83 mg kg− 1, respectively) was in the phytotoxic range. Wastewater irrigated okras accumulate all of the studied trace metals in their roots (Bioaccumulation factor: BF > 1). In contrast, okra plants had no accumulated trace metals strategy in their shoot, as translocation factor values were less than one. Authors recommended avoiding consuming okra plants cultivated in fields irrigated with wastewater due to high trace metals concentration in their edible part.


2016 ◽  
Vol 58 (2) ◽  
pp. 7-19 ◽  
Author(s):  
Małgorzata Wierzbicka ◽  
Maria Pielichowska ◽  
Agnieszka Abratowska ◽  
Bogusław Wiłkomirski ◽  
Irena Wysocka ◽  
...  

AbstractBiscutella laevigataL. is known as a Tl hyperaccumulator. In PolandBiscutella laevigataoccurs in the Tatra Mts (Western Carpathians) and on the calamine waste heap in Bolesław near Olkusz (Silesian Upland). The purpose of this work was to evaluate whether plants of both populations were able to accumulate an elevated amount of thallium in their tissues. The plants were cultivated in calamine soil in a glasshouse for a season and studied at different ages – from 2-week-old seedlings to 10-month-old adults. Additionally, the plants were grown for ten weeks in calamine soil with EDTA to enhance Tl bioavailability. The total content of Tl in plant tissues after digestion was determined by ICP-MS, whereas its distribution in leaves was studied by LA-ICP-MS. Of the total content of Tl in the soil in the range of (15.2–66.7) mg∙kg−1d.m., only (1.1–2.1) mg∙kg−1d.m. was present in a bioavailable form. The mean content in all the plants grown on the soil without EDTA was 98.5 mg∙kg−1d.m. The largest content was found in leaves – 164.9 mg∙kg−1d.m. (max. 588.2 mg∙kg−1d.m.). In the case of plants grown on the soil enriched with EDTA, the mean content in plants increased to 108.9 mg∙kg−1d.m., max. in leaves – 138.4 mg∙kg−1d.m. (max. 1100 mg∙kg−1d.m.). The translocation factor was 6.1 in the soil and 2.2 in the soil with EDTA; the bioconcentration factor amounted to 10.9 and 5.8, respectively. The plants from both populations did not contain a Tl amount clearly indicating hyperaccumulation (100–500 mg∙kg−1d.m.), however, high (>1) translocation and bioconcentration factors suggest such an ability. It is a characteristic species-wide trait;B. laevigataL. is a facultative Tl hyperaccumulator. The largest Tl amount was located at the leaf base, the smallest at its top. Thallium also occurred in trichomes, which was presented for the first time; in this way plants detoxify Tl in the above-ground parts. Leaves were much more hairy in the Bolesław plants. This is an adaptation for growth in the extreme conditions of the zinc-lead waste heap with elevated Tl quantity.


2014 ◽  
Vol 6 (2) ◽  
pp. 3361-3391
Author(s):  
M. Lago-Vila ◽  
D. Arenas-Lago ◽  
A. Rodríguez-Seijo ◽  
M. L. Andrade Couce ◽  
F. A. Vega

Abstract. Several soils developed on the former serpentinite quarry of Penas Albas (Moeche, Galicia, NW Spain) were studied, together with the vegetation growing spontaneously over them. The aim of this work was to identify the bioavailability of heavy metals and to evaluate the potential of spontaneous vegetation for the phytoremediation and/or phytostabilisation of these areas. The pH of the soils ranges from neutral to basic, with very low organic matter and nitrogen contents. There are imbalances between exchangeable cations that can strongly limit plant production. Moreover, in all of the soils there are high levels of Co, Cr and Ni (> 70, > 1500, and > 1325 mg kg-1, respectively). They exceed the intervention limits indicated in different guides. Different soil extractions were performed in order to evaluate bioavailability. CaCl2 0.01 M is the most effective extraction reagent, although the reagent that best predicts plant availability is the mixture of low molecular weight organic acids. Festuca rubra, L. is the spontaneous plant growing in the soils that accumulates the highest amount of the metals, both in shoot and roots. Festuca also has the highest translocation factor values, although they are only > 1 for Cr. The bioconcentration factor is > 1 in all of the cases, except in the shoot of Juncus sp. for Co and Ni. The results indicate that Festuca is a phytostabilizer of Co and Ni and an accumulator of Cr, while Juncus sp. is suitable for phytostabilization. Both of the studied species contribute towards the phytostabilisation of the soils and their recovery, improving their characteristics and making it possible to start planting other species.


2021 ◽  
Vol 19 (4) ◽  
pp. 282-291
Author(s):  
Jessica O. Tablang ◽  
◽  
Florenda B. Temanel ◽  
Ron Patrick C. Campos ◽  
Helen C. Ramos ◽  
...  

Lead (Pb) has become one of the most common heavy metal contaminants, demanding research on economical remediation approaches with minimal ecological impacts. Pepper elder (Peperomia pellucida) is a fast-growing plant that can be a candidate for bioaccumulation and phytoremediation. In this study, the lead bioaccumulation of P. pellucida was assessed by determining the growth response and absorptive capacity of the plant. Plants were grown in hydroponic solution spiked with 500 mg/L of Pb for 28 days. Growth response, absorptive capacity and tolerance of plants grown in contaminated nutrient solution were determined in comparison with control plants. After 28 days of exposure, lead phytotoxicity symptoms such as wilting, chlorosis and necrosis were observed on some plants. The control plants recorded 3.08 g total dry weight (DW) compared to the 1.35 g in Pb-contaminated plants. The tolerance index (TI) of P. pellucida was at 43.40%. The plants were able to absorb lead, with the concentration of lead in the roots (158.6 µg/g) being greater than the concentration of the metal in the shoots (43.2 µg/g). Meanwhile, bioconcentration factor (BCF) and translocation factor (TF) values were recorded at 0.40 and 0.27, respectively. BCF criterion indicates that the plant is not suitable for phytoextraction, but TF value shows that the plant can be a potential excluder. The findings of the study show that P. pellucida accumulated considerable amount of lead within its tissues, indicating that the plants may be further exploited for their capacity to absorb heavy metals by tweaking several factors that may affect its bioaccumulation ability.


2021 ◽  
Vol 27 (3) ◽  
pp. 199-212
Author(s):  
Guido Sarmiento-Sarmiento ◽  
◽  
Shadai Febres-Flores ◽  

Lead (Pb) contamination is an environmental problem that deteriorates the quality of agricultural soils; therefore, it is a priority to evaluate remediation strategies for its recovery. The aim of this research was to evaluate the effect of sunflower (Helianthus annuus) and vermicompost in the remediation of agricultural soils artificially contaminated with Pb. The treatments studied were: T1 (soil with Pb, vermicompost and sunflower), T2 (soil with Pb and vermicompost), T3 (soil with Pb and sunflower) and T4 (soil with Pb). The initial Pb value in the soil was 16.05 ppm, and 105 ppm Pb were added by dissolving Pb(NO3)2, reaching a concentration of 121.05 ppm as the initial level, higher than the national environmental quality standard (EQS) for agricultural soils (70 ppm Pb). All treatments reduced the Pb concentration in the soil below the EQS. T2 stood out by achieving a Pb recovery of 81.21 %. The Pb bioconcentration factor (BF) in the aerial part and roots of sunflower plants (T1 and T3) registered values of less than one, acting as an exclusive plant species. According to the Pb translocation factor (TF), sunflower in the presence of vermicompost (T1) behaved as a Pb phytostabilizing plant (TF < 1), and in the absence of vermicompost (T3) it proved to be a Pb phytoextractor (TF > 1).


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1253
Author(s):  
Encarna Merlo ◽  
Antonio J. Mendoza-Fernández ◽  
Esteban Salmerón-Sánchez ◽  
Fabián Martínez-Hernández ◽  
Andrea Ortiz-Úbeda ◽  
...  

Unusual dolomite substrates present a phenomenon known as dolomitophily, which refers to the specificity of the flora that grows on them. Within the dolomitic flora, one of the most widespread plants in Spain is the characteristic species Pterocephalus spathulatus (Lag.) Coult., which forms whitish prostrate thymes. The present study focused on the knowledge about the ionome (or elementome) of a characteristic dolomite species and some of its applications, both in terms of its nutritional behaviour and in determining the factors that favour the rich and rare flora growing on dolomitic soils. Soil, foliar, stem and root samples of the species studied were collected from different locations in the south of Spain. The samples were analysed to determine their mineral composition. The Bioconcentration Factor (BCF) and the Translocation Factor (TF) were calculated, relating the values of the mineral contents in the soil, both total and phytoavailable, to the values from the foliar, root and stem samples. It was found that this species was able to accumulate some elements, including B, Cr, Cu, Ni, Ti, Tl and Zn, which can be phytotoxic in high concentrations, and are considered to be some of the main toxic metals in soils. In addition, it was observed that the plant can accumulate metals in the stem and leaves (TF), thus proving that it is capable of transporting them from the root to the aerial part of the plant. The data obtained may indicate that other species in the plant community may possess this bioindicator or even phytoremediation capacity.


2017 ◽  
pp. 74-79 ◽  
Author(s):  
Luca Vitale ◽  
Anna Tedeschi ◽  
Franca Polimeno ◽  
Lucia Ottaiano ◽  
Giuseppe Maglione ◽  
...  

Tomato plants were subjected to three fertilisation treatments (M: mineral fertiliser; DMPP: mineral fertiliser + 3,4- dimethylpyrazole phosphate; OM: NKP + organic animal manure) in combination with two water regimes (100% and 50% evapotranspiration). Plant biomass, fruit production, nitrogen use efficiency (NUE) and N uptake, maximal PSII photochemical efficiency, Fv/Fm and cumulative soil N2O emission were determined. Well-watered OM plants showed higher values of biomass, fruit production, NUE and N uptake than M and DMPP plants; cumulative N2O fluxes were lower in DMPP plots than in M and OM plots. The reduced water supply determined a drop in crop biomass, fruit production, NUE and N uptake, and cumulative N2O fluxes in M and OM treatments that were higher in OM plots, whereas it determined a significant rise in cumulative N2O fluxes in DMPP plots that was lower in absolute term compared to M and OM plots recorded under well-water irrigation. It can be concluded that DMPP added-fertiliser has a good performance in semiarid environment resulting a better nitrogen source compared to conventional and organo-mineral fertilisers under reduced water supply, able to preserve crop yield and to determine soil N2O emissions (as expressed in CO2 eq) not dangerous for global environment.


Author(s):  
Faisal Hamzah

In this study, the concentrations of three kinds of heavy metals, namely Pb, Zn, and Cu from 3 species of mangrove that grow in Muara Angke were measured and analyzed. Our result showed that substrate of mangrove ecosystem in Muara Angke was dominated by clay (30.5% - 62.4%), silt (21.7% -35.6%), and sand (2% -39.5%). The heavy metals accumulation in roots is higher than in sediment, water and leaves with concentration of Zn as the highest. Bioconcentration Factor (BCF; content ratio of heavy metal concentrations in roots or leaves and sediment) and Translocation Factor (TF; ratio of heavy metal concentrations in leaves and roots) of non-essential heavy metals (Pb) is higher in leaves than in roots, but for essential heavy metals (Zn and Cu), the BCF and TF was higher in roots than in leaves. TF values for heavy metals Pb, Cu, and Zn were 0.98-2.59, 0.17-0.51, and 0.52-0.86, respectively. The values of root BCF of those three heavy metals were 0.71-3.17, 0.27-0.74, and 0.95-1.53, while the values of leaf BCF were 1.84-3.45, 0.07-0.34, and 0.72-1.19, respectively. Furthermore, by calculating the phytoremediation (FTD), i.e. the difference between BCF and TF, it is obtained that Sonneratia caseolaris and Avicennia marina can be used in phytoremidiation, with leaves and roots FTD of 1.93 and 2.09, respectively for Sonneratia caseolaris and 1.93 and 1.98 for Avicennia marina.Keywords: heavy metals, mangroves, phytoremidiation, Muara Angke, bioconcentration factor, translocation factor


2018 ◽  
Vol 22 (03) ◽  
pp. 77-81
Author(s):  
Otgonsuvd B ◽  
Ouyngerel Sh ◽  
Altanzaya T

Orostachys spinosa L. is a succulent plant native to predominantly East Asia. The objective of this study was to identify physiological and morphological responses of O. spinosa L. species to cold, drought stress in laboratory conditions. Exposure of plants to a drought stress for 28 days slightly decreased the photochemical efficiency of PSII and the Fv/Fm values were 10-15% lower (0.75±0.01) compared with the control plants (0.85±0.01). For cold treatments, plants were exposed to 4°C for 60 days and for recovery transferred to normal growth conditions for 14 days. Fv/Fm photochemical efficiency of PSII can be used to monitor PSII photoinhibition. This parameter describes the efficiency of the electron transfer within PSII.The results of this study demonstrated that O. spinosa L. plants were better adapted to cold and drought conditions as they showed less visible symptoms and highest Fv/Fm levels at the long time chilling and drought stress.


Sign in / Sign up

Export Citation Format

Share Document