scholarly journals Secured Data Storage Using Deduplication in Cloud Computing Based on Elliptic Curve Cryptography

2022 ◽  
Vol 41 (1) ◽  
pp. 83-94
Author(s):  
N. Niyaz Ahamed ◽  
N. Duraipandian
2020 ◽  
Vol 11 (4) ◽  
pp. 65-81
Author(s):  
Anju Malik ◽  
Mayank Aggarwal ◽  
Bharti Sharma ◽  
Akansha Singh ◽  
Krishna Kant Singh

With the rapid development of cloud advancement, a data security challenge has emerged. In this paper, a technique based on elliptical cryptography and cuckoo search algorithm is proposed. With this technique, data owners securely store their data files in the cloud server. Initially the user sends a file storage request to store a file in a cloud server provider (CSP). The input file is checked whether it is sensitive or non-sensitive by the user. If the file is sensitive, then it would be split and stored in different virtual machines (VMs), and if the file is non-sensitive, then it would be assigned in a single VM. This approach was used for the first time as per the survey. To add further security, the sensitive data retrieval needs an encryption process that is supported by the proposed algorithm. If the data owner stores the sensitive data to cloud server, the data owner's document is encrypted by the double encryption technique. Here RSA and optimal elliptic curve cryptography (OECC) algorithm is used to encrypt the document with high security. The authors have used cuckoo search algorithm to identify the optimal key in ECC. This paper has proposed a novel cryptography approach for delivering mass distributed storage by which user's original data cannot be directly reached by cloud operators. Hence, this research has proved that the proposed work will give better securable data storage solving the security issues.


Author(s):  
Amrani Ayoub ◽  
Rafalia Najat ◽  
Abouchabaka Jaafar

<span>Cloud Computing and the Internet of Things (IoT), two different technologies, are already part of our lives. Their impressive adoption increasing more and more, which makes them the future of the future internet. The tsunami of interconnectivity between objects and data collection is increasingly based on Cloud Computing, where data analysis and intelligence really reside. A new paradigm where the Cloud and the IoT are merged will create a new air in the world of technology, which can offer many services and applications useful to humanity. However, despite the great benefits that can bring this technology in term of new services, elasticity and flexibility, the security aspect still remains a serious constraint which hampers the expansion of this technology. This paper proposes a lightweight Mutual authentication protocol based on Constrained Application Protocol (CoAP); that is suitable for IoT devices than HTTP and using elliptic curve cryptography to secure data transmission between the Cloud and devices. We used the AVISPA tool to verify our proposed scheme.</span>


Author(s):  
Md Sirajul Huque ◽  
Sk. Bhadar Saheb ◽  
Jayaram Boga

Wireless sensor networks (WSN) are a collection of autonomous collection of motes. Sensor motes are usually Low computational and low powered. In WSN Sensor motes are used to collect environmental data collection and pass that data to the base station. Data aggregation is a common technique widely used in wireless sensor networks. [2] Data aggregation is the process of collecting the data from multiple sensor nodes by avoiding the redundant data transmission and that collected data has been sent to the base station (BS) in single route. Secured data aggregation deals with Securing aggregated data collected from various sources. Many secured data aggregation algorithms has been proposed by many researchers. Symmetric key based cryptography schemes are not suitable when wireless sensor network grows. Here we are proposing an approach to secured data aggregation in wireless sensor networks using Asymmetric key based Elliptic Curve cryptography technique. Elliptic curve cryptography (ECC) [1] is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. Elliptic Curve Cryptography requires smaller keys compared to non-Elliptic curve cryptography (based on plain Galois fields) to provide equivalent security. The proposed technique of secure data aggregation is used to improve the sensor network lifetime and to reduce the energy consumption during aggregation process.


2021 ◽  
Vol 33 (6) ◽  
pp. 0-0

In the mobile cloud computing era, the sharing of secured large-scale data which have major challenges. From an existing quantum based security mechanism randomly chosen the photon detector which creates small length of qubits so it cannot provide much security in MCC also data storage in the cloud server doesn’t guarantees the lossless back up and data recovery as well attains more computation complex during secure access of stored data. Therefore to solve those issues a unique combination of the Trefoil Congruity framework is proposed which consist Quantum Key Fibo Privacy Approach (QKFPA) performing the quantum key generation for encrypt and decrypt the data with the aid of Fibonacci chain-slanting matrix. Based on that quantum key data is uploaded, then secured data should be stored, ultra-widely distributed data transfer mechanism does the scrambling with sorting the stored data by implementing novel HS-DRT technique that improves the lossless backup and recovery of data storage.


Sign in / Sign up

Export Citation Format

Share Document