scholarly journals Deep Learning Based Stacked Sparse Autoencoder for PAPR Reduction in OFDM Systems

2022 ◽  
Vol 31 (1) ◽  
pp. 311-324
Author(s):  
A. Jayamathi ◽  
T. Jayasankar
2021 ◽  
Author(s):  
Gracielly G. F. Coutinho ◽  
Gabriel B. M. Câmara ◽  
Raquel de M. Barbosa ◽  
Marcelo A. C. Fernandes

Since December 2019, the world has been intensely affected by the COVID-19 pandemic, caused by the SARS-CoV-2 virus, first identified in Wuhan, China. In the case of a novel virus identification, the early elucidation of taxonomic classification and origin of the virus genomic sequence is essential for strategic planning, containment, and treatments. Deep learning techniques have been successfully used in many viral classification problems associated with viral infections diagnosis, metagenomics, phylogenetic, and analysis. This work proposes to generate an efficient viral genome classifier for the SARS-CoV-2 virus using the deep neural network (DNN) based on the stacked sparse autoencoder (SSAE) technique. We performed four different experiments to provide different levels of taxonomic classification of the SARS-CoV-2 virus. The confusion matrix presented the validation and test sets and the ROC curve for the validation set. In all experiments, the SSAE technique provided great performance results. In this work, we explored the utilization of image representations of the complete genome sequences as the SSAE input to provide a viral classification of the SARS-CoV-2. For that, a dataset based on k-mers image representation, with k=6, was applied. The results indicated the applicability of using this deep learning technique in genome classification problems.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hongmei Liu ◽  
Lianfeng Li ◽  
Jian Ma

The main challenge of fault diagnosis lies in finding good fault features. A deep learning network has the ability to automatically learn good characteristics from input data in an unsupervised fashion, and its unique layer-wise pretraining and fine-tuning using the backpropagation strategy can solve the difficulties of training deep multilayer networks. Stacked sparse autoencoders or other deep architectures have shown excellent performance in speech recognition, face recognition, text classification, image recognition, and other application domains. Thus far, however, there have been very few research studies on deep learning in fault diagnosis. In this paper, a new rolling bearing fault diagnosis method that is based on short-time Fourier transform and stacked sparse autoencoder is first proposed; this method analyzes sound signals. After spectrograms are obtained by short-time Fourier transform, stacked sparse autoencoder is employed to automatically extract the fault features, and softmax regression is adopted as the method for classifying the fault modes. The proposed method, when applied to sound signals that are obtained from a rolling bearing test rig, is compared with empirical mode decomposition, Teager energy operator, and stacked sparse autoencoder when using vibration signals to verify the performance and effectiveness of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wenliao Du ◽  
Shuangyuan Wang ◽  
Xiaoyun Gong ◽  
Hongchao Wang ◽  
Xingyan Yao ◽  
...  

Discriminative feature extraction is a challenge for data-driven fault diagnosis. Although deep learning algorithms can automatically learn a good set of features without manual intervention, the lack of domain knowledge greatly limits the performance improvement, especially for nonstationary and nonlinear signals. This paper develops a multiscale information fusion-based stacked sparse autoencoder fault diagnosis method. The autoencoder takes advantage of the multiscale normalized frequency spectrum information obtained by dual-tree complex wavelet transform as input. Accordingly, the multiscale normalized features guarantee the translational invariance for signal characteristics, and the stacked sparse autoencoder benefits the unsupervised feature learning and ensures accurate and stable diagnosis performance. The developed method is performed on motor bearing vibration signals and worm gearbox vibration signals, respectively. The results confirm that the developed method can accommodate changing working conditions, be free of manual feature extraction, and perform better than the existing intelligent diagnosis methods.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2347
Author(s):  
Ibomoiye Domor Mienye ◽  
Yanxia Sun

Heart disease is the leading cause of death globally. The most common type of heart disease is coronary heart disease, which occurs when there is a build-up of plaque inside the arteries that supply blood to the heart, making blood circulation difficult. The prediction of heart disease is a challenge in clinical machine learning. Early detection of people at risk of the disease is vital in preventing its progression. This paper proposes a deep learning approach to achieve improved prediction of heart disease. An enhanced stacked sparse autoencoder network (SSAE) is developed to achieve efficient feature learning. The network consists of multiple sparse autoencoders and a softmax classifier. Additionally, in deep learning models, the algorithm’s parameters need to be optimized appropriately to obtain efficient performance. Hence, we propose a particle swarm optimization (PSO) based technique to tune the parameters of the stacked sparse autoencoder. The optimization by the PSO improves the feature learning and classification performance of the SSAE. Meanwhile, the multilayer architecture of autoencoders usually leads to internal covariate shift, a problem that affects the generalization ability of the network; hence, batch normalization is introduced to prevent this problem. The experimental results show that the proposed method effectively predicts heart disease by obtaining a classification accuracy of 0.973 and 0.961 on the Framingham and Cleveland heart disease datasets, respectively, thereby outperforming other machine learning methods and similar studies.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yanbin Wang ◽  
Zhuhong You ◽  
Liping Li ◽  
Li Cheng ◽  
Xi Zhou ◽  
...  

Protein-protein interactions (PPIs), as an important molecular process within cells, are of pivotal importance in the biochemical function of cells. Although high-throughput experimental techniques have matured, enabling researchers to detect large amounts of PPIs, it has unavoidable disadvantages, such as having a high cost and being time consuming. Recent studies have demonstrated that PPIs can be efficiently detected by computational methods. Therefore, in this study, we propose a novel computational method to predict PPIs using only protein sequence information. This method was developed based on a deep learning algorithm-stacked sparse autoencoder (SSAE) combined with a Legendre moment (LM) feature extraction technique. Finally, a probabilistic classification vector machine (PCVM) classifier is used to implement PPI prediction. The proposed method was performed on human, unbalanced-human, H. pylori, and S. cerevisiae datasets with 5-fold cross-validation and yielded very high predictive accuracies of 98.58%, 97.71%, 93.76%, and 96.55%, respectively. To further evaluate the performance of our method, we compare it with the support vector machine- (SVM-) based method. The experimental results indicate that the PCVM-based method is obviously preferable to the SVM-based method. Our results have proven that the proposed method is practical, effective, and robust.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jian Ma ◽  
Hua Su ◽  
Wan-lin Zhao ◽  
Bin Liu

Because they are key components of aircraft, improving the safety, reliability and economy of engines is crucial. To ensure flight safety and reduce the cost of maintenance during aircraft engine operation, a prognostics and health management system that focuses on fault diagnosis, health assessment, and life prediction is introduced to solve the problems. Predicting the remaining useful life (RUL) is the most important information for making decisions about aircraft engine operation and maintenance, and it relies largely on the selection of performance degradation features. The choice of such features is highly significant, but there are some weaknesses in the current algorithm for RUL prediction, notably, the inability to obtain tendencies from the data. Especially with aircraft engines, extracting useful degradation features from multisensor data with complex correlations is a key technical problem that has hindered the implementation of degradation assessment. To solve these problems, deep learning has been proposed in recent years to exploit multiple layers of nonlinear information processing for unsupervised self-learning of features. This paper presents a deep learning approach to predict the RUL of an aircraft engine based on a stacked sparse autoencoder and logistic regression. The stacked sparse autoencoder is used to automatically extract performance degradation features from multiple sensors on the aircraft engine and to fuse multiple features through multilayer self-learning. Logistic regression is used to predict the remaining useful life. However, the hyperparameters of the deep learning, which significantly impact the feature extraction and prediction performance, are determined based on expert experience in most cases. The grid search method is introduced in this paper to optimize the hyperparameters of the proposed aircraft engine RUL prediction model. An application of this method of predicting the RUL of an aircraft engine with a benchmark dataset is employed to demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document