Study of Corrosion Rate on Graphene and S-Glass Reinforced Al-6061 Metal Matrix Composites
This research work investigated the effect of the graphene and S-glass fiber on the corrosion rate of the Al6061 / S-Glass & Graphene particulate MMCs. Metal Matrix Composites (MMC’s) consist of either pure metal or an alloy as the matrix material, while the reinforcement generally a ceramic material. Aluminium composites are considered as one of the advanced engineering materials which have attracted more and more benefits. Now a days these materials are widely used in space shuttle, commercial airlines, electronic substrates, bicycles, automobiles, etc., Among the MMC’s aluminium composites are predominant in use due to their low weight and high strength. The key features of MMC’s are specific strength and stiffness, excellent wear resistance, high electrical and thermal conductivity. Hence, it is proposed to form a new class of composite. The Al 6061(Aluminium alloy 6061) reinforced with graphene and S-glass fiber to form MMCs were investigated. The stir casting technique of liquid metallurgy was used for the fabrication of the composite material. The composite was produced for different percentages of graphene and S-Glass fiber(varying Graphene with constant S-Glass fiber and varying S-Glass fiber with constant Graphene percentage). The specimens were prepared as per ASTM standard size by turning and facing operations to conduct corrosion tests and they were tested using Brine solution (NaCl solution) with varying normalities. Through the results, it is concluded that the corrosion resistance of the prepared hybrid composites increases as the composition of graphene and S-glass fiber increases, and also corrosion resistance increases with increase in time.