scholarly journals Influence of Binder Type and Additives on Permanent Deformation of Asphalt Concrete

Author(s):  
S.I. Sarsam
2013 ◽  
Vol 40 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Guy Doré ◽  
Jonas Depatie

The use of recycled asphalt pavement (RAP) aggregates as replacement for new materials in the pavement base weakens the layer in regards to the resistance to permanent deformation under repeated loading. A mechanistic based design procedure is proposed to ensure that base layers containing RAP particles have a similar rutting behaviour to base layers made of virgin aggregates. The design procedure allows calculating an asphalt concrete thickness increase that is based on permanent deformation behaviour of base materials. The calculation approach is based on multistage triaxial permanent deformation tests performed on granular material samples with varied RAP content. The tests allowed proposing an equation that relates permanent strain rate, RAP content, and deviatoric stress, which is the basis of the design procedure. Design charts are proposed to select adequate thickness increase for the asphalt concrete layer according to the expected RAP content in the base layer and asphalt concrete modulus.


2016 ◽  
Vol 43 (3) ◽  
pp. 226-232 ◽  
Author(s):  
S. Pirmohammad ◽  
H. Khoramishad ◽  
M.R. Ayatollahi

In this paper, the effects of the main asphalt concrete characteristics including the binder type and the air void percentage on the cohesive zone model (CZM) parameters were studied. Experimental tests were conducted on semi-circular bend (SCB) specimens made of asphalt concrete and the fracture behavior was simulated using a proper CZM. The CZM parameters of various hot mix asphalt (HMA) mixtures were determined using the SCB experimental results. Five types of HMA mixtures were tested and modeled to consider the effects of binder type and air void percentage on the CZM parameters. The results showed that as the binder in HMA mixture softened, the cohesive energy strength increased, whereas enhancing the air void percentage led to reduction of the cohesive energy and strength values. Among the studied HMA mixtures, the highest values of CZM parameters were found for the HMA mixture containing a copolymer called styrene-butadiene-styrene.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4731
Author(s):  
Mateusz M. Iwański

Half-warm mix asphalt (HWMA) mixtures can be produced at temperatures ranging from 100 °C to 130 °C, depending on the production methods used. The lowest mixing temperature can be achieved by using water-foamed bitumen. The mixture should be characterized by a long service life, defined by the resistance to permanent deformation and high stiffness modulus at temperatures above zero. It is therefore important to ensure the adequately high quality of the bitumen binder. Bitumen 50/70 was provided with appropriate quality foaming characteristics (expansion ratio, ER, half-life, t1/2) by adding a surface-active agent (SAA) at 0.6 wt % before foaming. Then asphalt concrete (AC) 8 S was designed and produced with the recommended water-foamed binder. Hydrated lime, an additive substantially affecting asphalt concrete mechanical parameters, was used at 0, 15, 30, and 45 wt % as a partial replacement for the limestone filler. The influence of the amount of hydrated lime on the content of voids, indirect tensile stiffness modulus at −10 °C, 0 °C, +10 °C, +20 °C, and +30 °C, and the resistance to permanent deformation was investigated. Statistical analysis of the test results showed the quantity of 30% to be the optimum hydrated lime content. The AC 8 S resistance to permanent deformation was determined at the optimum hydrated lime content. The comprehensive evaluation revealed a synergistic effect between bitumen 50/70, modified before foaming with 0.6 wt % SAA and 30 wt % hydrated lime as the limestone filler replacement, and the half warm mixture AC 8 S, in terms of the standard requirements and durability of the HWMA concrete in pavement applications.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ahmed F. Al-Tameemi ◽  
Yu Wang ◽  
Amjad Albayati

Abstract Flexible or asphalt concrete pavement is the paving system most widely adopted all over the world. It has been recognized that there are many different types of the factors affecting the performance and durability of asphalt concrete pavement, including the service conditions, such as: the variation of temperature from mild to extremes and the repeated excessive axle loading as well as the inadequate quality of the raw materials. All of these when combined together are going to accelerate the occurrence of distresses in flexible pavement such as permanent deformation and fatigue cracking. As the result, there has an urgent need to enhance the ability of asphalt concrete mixture to resist distresses happened in pavement. Use of additives is one of the techniques adopted to improve pavement properties. It has been found that hydrated lime might be one of the effective additives because it is widely available and relatively cheap compared to other modifiers like polymers. This paper presents an experimental study of the hydrated-lime modified asphalt concrete mixtures. Five different percentages of the hydrated lime additive were investigated, namely (1, 1.5, 2, 2.5 and 3 percent). The hydrated lime additive was used as partial replacement of limestone filler by total weight of the aggregate. The designed Hot Mix Asphalt (HMA) concretes are for the application of three pavement courses, i.e. Surface, Leveling and Base. These mixtures are designed and tested following Marshall procedure and uniaxial repeated loading to evaluate permanent deformation at different temperatures of 20°C, 40°C and 60°C. The experimental results show that the addition of hydrated lime as a partial replacement of ordinary limestone mineral filler results a significant improvement on mechanical properties and the resistant to permanent deformation of the designed asphalt concrete mixtures.


Sign in / Sign up

Export Citation Format

Share Document