The prioritization of renewable energy technologies in Pakistan: An urgent need

Author(s):  
Leezna Saleem ◽  
Imran Ahmad Siddiqui ◽  
Intikhab Ulfat

Pakistan is the world's sixth most populous country, currently facing the worst energy crisis. Although rich in renewable resources, Pakistan's energy system relies mainly on fossil fuels and imported energy for its energy needs. This study aims to use an analytical hierarchy pro-cess to prioritize six renewable technologies for Pakistan, with four criteria and thirteen subcriteria. The results indicate that solar power is particularly well suited for Pakistan, as it gained 42% priority weightage in the final aggregation. Wind energy is ranked second with a priority weight of 24%, followed by hydro 13%, biomass 9%, ocean 8% and geothermal en-ergy 3%. Solar and wind energies accounted for nearly 66% of the total weightage. This result highlighted the significance of economic criteria for the selection of renewable technologies in Pakistan, with around 43% priority weightage. Environmental criteria gained 19% whereas socio-political criteria registered 14% and technical criteria 23% priority weightage. During the potential assessment of the research, it was concluded that although renewable resource development has not been allocated sufficient attention in Pakistan in the past, if the correct decisions are taken regarding the exploitation of these resources, this can remedy the country's hazardous dependence on fossil fuel and imported energy.

2017 ◽  
Vol 5 (1(SE)) ◽  
pp. 58-61
Author(s):  
D.P.Jesudoss Manohar ◽  
T. Jayaprakasam

India is facing an acute energy scarcity which is hampering its industrial growth and economic progress. Setting up of new power plants is inevitably dependent on import of highly volatile fossil fuels. Thus, it is essential to tackle the energy crisis through judicious utilization of abundant the renewable energy resources, such as Biomass Energy solar Energy, Wind Energy and Geothermal Energy. Apart from augmenting the energy supply, renewable resources will help India in mitigating climate change. India is heavily dependent on fossil fuels for its energy needs. Most of the power generation is carried out by coal and mineral oil-based power plants which contribute heavily to greenhouse gases emission. Solar Power a clean renewable resource with zero emission, has got tremendous potential of energy which can be harnessed using a variety of devices.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 163 ◽  
Author(s):  
Julián Puszkiel ◽  
Aurelien Gasnier ◽  
Guillermina Amica ◽  
Fabiana Gennari

Hydrogen technology has become essential to fulfill our mobile and stationary energy needs in a global low–carbon energy system. The non-renewability of fossil fuels and the increasing environmental problems caused by our fossil fuel–running economy have led to our efforts towards the application of hydrogen as an energy vector. However, the development of volumetric and gravimetric efficient hydrogen storage media is still to be addressed. LiBH4 is one of the most interesting media to store hydrogen as a compound due to its large gravimetric (18.5 wt.%) and volumetric (121 kgH2/m3) hydrogen densities. In this review, we focus on some of the main explored approaches to tune the thermodynamics and kinetics of LiBH4: (I) LiBH4 + MgH2 destabilized system, (II) metal and metal hydride added LiBH4, (III) destabilization of LiBH4 by rare-earth metal hydrides, and (IV) the nanoconfinement of LiBH4 and destabilized LiBH4 hydride systems. Thorough discussions about the reaction pathways, destabilizing and catalytic effects of metals and metal hydrides, novel synthesis processes of rare earth destabilizing agents, and all the essential aspects of nanoconfinement are led.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-26 ◽  
Author(s):  
Sarvesh Kumar Gupta ◽  
Shivani Gupta ◽  
Abhishek Kumar Gupta

From the last several decades, in the area of energy storage like batteries, electrochemical supercapacitors and dye-sensitized solar cells etc. electrolytes are playing an important role. Electrolytes are able to overcome the concern related to existing conventional energy storage devices. Selection of better electrolyte is a very important and wise task. It is challenging work to develop very suitable and sophisticated electrolytes for energy storage devices. Currently, many researchers are working to meet the above challenges for better outcomes so that a suitable electrolytes can be developed for energy storage devices. It is not surprising that energy storage has long been mentioned as the most important part of energy technologies. This review paper will be focused on the past achievement in the field of electrolyte and their development up to recent ionogel electrolytes. Further future direction for required properties and applications of ionogel electrolytes have been highlighted.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Carlos Andrés Gallego

The deployment of renewable energy technologies will play a crucial role in the global transition to a low-carbon economy and ultimately in the fight against global warming. However, this transition could face important problems because most of those technologies rely on the steady supply of critical minerals. Colombia, thanks to its hydrological resources, has relied on the hydro­power for electricity generation. However, the government has implemented measures to back-up the energy system in draught periods and, consequently, fossil fuels-based plants have increased the market share and with these, CO2 emissions. This study assesses the mineral demand in Colombia in the period 2020-2050 for the rare earth elements embedded in the deployment of wind power technologies in four different climate policy scenarios in order to establish whether they could face geological bott­lenecks that could ultimately hamper the transition to a low-carbon economy. The Gigawatts (GW) of future capacity additions in the energy system are converted into tons of metal using published metal intensities of use and assumptions of Colombia’s technological pathway. Then, the cumulated mineral demand is compared against current mining production rates and geological reserves to establish geological bottlenecks. The results show that the reserves will not pose any threat to its transition. However, when compared to current mining rates, the mineral demand in 2050 could pose a problem for the supply of minerals. Finally, this study gives some policy recommendations that could be used to mitigate these issues, such as substitution, improved circular economy and sound technological choices.


Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


2015 ◽  
Vol 77 (4) ◽  
Author(s):  
N. Baluch ◽  
S. Mohtar ◽  
A. S. Ariffin

The climate change, the global warming, the population growth and the continuous demand on energy and electricity in specific made renewable energy one of the most appropriate and fitting to answer all these changes of our environment. However, the vested interested groups belonging to the fossil fuel cartel continue working tirelessly to discourage the use of renewable energy and renewable energy solutions in the world. Despite the recusant efforts of the Oil Cartel, renewable energy use has grown much faster than anyone anticipated. This paper: defines green and renewable energy; highlights its benefits; and illustrates that clean energy technologies are prepared for accelerated and widespread expansion in the global power sector. The paper critically examines the recusant efforts of the Oil Cartel undermining green renewable energy sector by bankrolling the production of unconventional oil and gas; and demonstrates that over-reliance on fossil fuels for power generation has significant health, environmental, and economic risks and is not a long-term solution to our energy needs. The paper concludes that a global transition to renewable energy is already underway. Renewable Energy offers an alternative to conventional sources and grants us greater control over future energy prices and supply. The energy choices we make during this pivotal moment will have huge consequences for our health, our climate, and our economy for decades to come.


Author(s):  
S. A. Sherif ◽  
F. Barbir ◽  
T. N. Veziroglu

The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness.


Author(s):  
Roshani Goel

India’s energy needs are in demand with the increase in energy and other electric uses which is highest among the world. There are sectors which heavily rely on energy generated by fossil fuels but there is also seen a paradigm shift towards renewable energy sources. If India continues to rely on the former then they end up blocking development in energy system meeting uncertainties and face difficulties in supply of fossil fuels. To meet the fast-growing economy, India needs to supply the energy 3-4 times more of what they are supplying now. Government of India has become aware of the situation and has started facilitating polices in action towards a sustainable energy. As of 2019, India’s on grid renewable energy capacity is 85.9 GW. Government is working to establish 500 GW of renewable energy source by 2030.


Author(s):  
Leezna Saleem ◽  
Intikhab Ulfat

Renewable technologies could be utilized to solve the energy crises of world’s sixth most populous country, Pakistan. Being rich in renewable resources of energy, the demand of electricity in household sector of Pakistan can easily be fulfilled which is otherwise scarce and have made the life of common people highly miserable. To formulate proper policies concerning the development of alternate energy sector it is essential to evaluate and prioritize the renewable technologies. In the present paper the aforementioned issue of evaluation and prioritization of renewable technologies has been addressed using AHP (Analytical Hierarchy Process) with the aim that the financial, technical, societal and environmental aspects are not compromised. Six alternatives (namely solar, wind, biomass, geothermal, ocean and hydel energies) have been prioritized. It has been concluded that to get around the crises of domestic electricity shortfall the choice of solar energy technology is the best among the alternatives highlighted above, followed by wind and biomass. With reference priority of the choice of alternate energy it is also emphasized that the financial aspect must be the decisive factor.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Karin Snyder

In the case of Japan, which lacks any significant fossil fuel reserves (Gasparatos & Gadda, 2009, pp. 4038-4048) some alternative forms of energy production have been implemented. Japan has implemented alternative energy options such as nuclear power, photovoltaic power, hydroelectric power, and other various energy alternatives and renewable resources. These alternatives have the potential to lessen climate change. Japan is becoming an example of the economic and environmental outcomes associated with alternative energy sources. Following the Fukushima disaster, the Japanese government addressed the possibility of removing nuclear power from the energy mix entirely by 2040 (Hong et al., 2013, pp. 418-424). In May of 2012, a governmental advisory board announced its plans to replace nuclear power with a combination of renewable sources and imported fossil fuels by 2030 (Hong et al., pp. 2013, 418-424).  Japan intends to supply ten percent of the country’s primary energy using renewable resources by 2020, under the Strategic Energy Plan of Japan (Japan Energy Report, 2013, pp. 1-31). As reported by the Japan Forum on International Relations in 2006, increased energy demands in Asia, accompanied with pressure to reduce carbon emissions, has created uncertainty surrounding Japan’s energy security since it has a large reliance on imported fossil fuels (Nasu & Faunce, 2013, pp. 68-74). The major goals of energy policy in Japan are energy security, economic development and environmental sustainability. To reach these goals, feed-in tariffs were approved by the Japanese government in the summer of 2012, in order to incentivize the use of renewable resources, especially photovoltaic power, and accelerate investment in renewable energy technologies (Frishberg, 2013, pp. 5-6). Since implementing these tariffs, Japan’s supply of solar generated power has grown by forty percent (Frishberg, 2013, pp. 5-6). There are many criteria that need to be met for efficient and useable sustainable energy technologies, such as accessibility to remote locales, user friendliness, adaptability to local conditions, efficiency and reliability (Balachandra et al., 2010, pp. 1842-1851). This criterion can be difficult to attain for large, growing populations. 


Sign in / Sign up

Export Citation Format

Share Document